$\textbf{Answer:}$
$ \frac{15}{2}$
$\textbf{Explanation:}$
We are going to make use of L' Hopitals Rule : \[ \lim_{x \to a} \frac {f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}\]
So we have that \[ \lim_{x \to 0} \frac{\sqrt{1+x} +(1+x)^7 -2}{x} \]
\[ = \lim_{x \to 0} \frac{ \frac{1}{2 \sqrt{x+1}} +7(x+1)^6}{1} \]
\[ = \frac{1}{2 \sqrt{0+1}} +7(0+1)^6 \]
\[ = \frac{15}{2} \]