MathsGee Answers is Zero-Rated (You do not need data to access) on: Telkom | Dimension Data | Rain | MWEB
First time here? Checkout the FAQs!
x
MathsGee is Zero-Rated (You do not need data to access) on: Telkom |Dimension Data | Rain | MWEB

0 like 0 dislike
11 views
Find the four roots of the polynomial $z^{4}+16$ and use these to factor $z^{4}+16$ into two quadratic polynomials with real coefficients.
in Mathematics by Gold Status (10,261 points) | 11 views

1 Answer

0 like 0 dislike
Best answer
Solution. The four roots of $z^{4}+16$ are given by
$$
\begin{aligned}
\sqrt[4]{-16} &=\sqrt[4]{16 e^{\pi i}}=\sqrt[4]{16} e^{\pi i / 4} e^{2 m \pi i / 4} \\
&=2 e^{\pi i / 4}, 2 e^{3 \pi i / 4}, 2 e^{5 \pi i / 4}, 2 e^{7 \pi i / 4}
\end{aligned}
$$
for $m=0,1,2,3$. We see that these roots appear in conjugate pairs:
$$
2 e^{\pi i / 4}=\overline{2 e^{7 \pi i / 4}} \text { and } 2 e^{3 \pi i / 4}=\overline{2 e^{5 \pi i / 4}}
$$
This gives the way to factor $z^{4}+16$ into two quadratic polynomials of real coefficients:
$$
\begin{aligned}
z^{4}+16 &=\left(z-2 e^{\pi i / 4}\right)\left(z-2 e^{3 \pi i / 4}\right)\left(z-2 e^{5 \pi i / 4}\right)\left(z-2 e^{7 \pi i / 4}\right) \\
&=\left(\left(z-2 e^{\pi i / 4}\right)\left(z-2 e^{7 \pi i / 4}\right)\right)\left(\left(z-2 e^{3 \pi i / 4}\right)\left(z-2 e^{5 \pi i / 4}\right)\right) \\
&=\left(z^{2}-2 \operatorname{Re}\left(2 e^{\pi i / 4}\right) z+4\right)\left(z^{2}-2 \operatorname{Re}\left(2 e^{3 \pi i / 4}\right) z+4\right) \\
&=\left(z^{2}-2 \sqrt{2} z+4\right)\left(z^{2}+2 \sqrt{2} z+4\right)
\end{aligned}
$$
by Gold Status (10,261 points)

MathsGee provides answers to subject-specific educational questions for improved outcomes.



On MathsGee Answers, you can:


1. Ask questions
2. Answer questions
3. Comment on Answers
4. Vote on Questions and Answers
5. Donate to your favourite users

MathsGee Tools

Math Worksheet Generator

Math Algebra Solver

Trigonometry Simulations

Vectors Simulations

Matrix Arithmetic Simulations

Matrix Transformations Simulations

Quadratic Equations Simulations

Probability & Statistics Simulations

PHET Simulations

Visual Statistics

ZeroEd Search Engine

Other Tools

MathsGee ZOOM | eBook