MathsGee Answers is Zero-Rated (You do not need data to access) on: Telkom | Dimension Data | Rain | MWEB
First time here? Checkout the FAQs!
MathsGee is Zero-Rated (You do not need data to access) on: Telkom |Dimension Data | Rain | MWEB

0 like 0 dislike
Prove that any subset of a countable set is countable and any superset of an uncountable set is uncountable.
in Mathematics by Diamond (74,866 points) | 21 views

1 Answer

0 like 0 dislike
Best answer


The intuition behind this theorem is the following: If a set is countable, then any "smaller" set should also be countable, so a subset of a countable set should be countable as well. To provide a proof, we can argue in the following way.

Let $A$ be a countable set and $B \subset A .$ If $A$ is a finite set, then $|B| \leq|A|<\infty$, thus $B$ is countable. If $A$ is countably infinite, then we can list the elements in $A$, then by removing the elements in the list that are not in $B$, we can obtain a list for $B$, thus $B$ is countable.

The second part of the theorem can be proved using the first part. Assume $B$ is uncountable. If $B \subset A$ and $A$ is countable, by the first part of the theorem $B$ is also a countable set which is a contradiction.

by Diamond (74,866 points)

Related questions

MathsGee provides answers to subject-specific educational questions for improved outcomes.

On MathsGee Answers, you can:

1. Ask questions
2. Answer questions
3. Comment on Answers
4. Vote on Questions and Answers
5. Donate to your favourite users

MathsGee Tools

Math Worksheet Generator

Math Algebra Solver

Trigonometry Simulations

Vectors Simulations

Matrix Arithmetic Simulations

Matrix Transformations Simulations

Quadratic Equations Simulations

Probability & Statistics Simulations

PHET Simulations

Visual Statistics

ZeroEd Search Engine

Other Tools

MathsGee ZOOM | eBook