# arrow_back What is the norm of $u=(1,-2,-4,5,3)$?

150 views
What is the norm of $u=(1,-2,-4,5,3)$?

Suppose $u=(1,-2,-4,5,3)$. To find $\|u\|$, we can first find $\|u\|^{2}=u \cdot u$ by squaring each component of $u$ and adding, as follows:
$$\|u\|^{2}=1^{2}+(-2)^{2}+(-4)^{2}+5^{2}+3^{2}=1+4+16+25+9=55$$
Then $\|u\|=\sqrt{55}$
by Bronze Status
(5,562 points)

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the negatives of (a) $u=(3,-5,-8,4)$, (b) $v=(-4,2 \pi, 0)$, (c) $0=(0,0,0,0)$.
Find the negatives of (a) $u=(3,-5,-8,4)$, (b) $v=(-4,2 \pi, 0)$, (c) $0=(0,0,0,0)$.Find the negatives of (a) $u=(3,-5,-8,4)$, (b) $v=(-4,2 \pi, 0)$, (c) $0=(0,0,0,0)$. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the dot product of $u = <-5,-6,-2>$ and $v = <-3,10,8>$. Are $u$ and $v$ orthogonal?
Find the dot product of $u = <-5,-6,-2>$ and $v = <-3,10,8>$. Are $u$ and $v$ orthogonal?Find the dot product of $u = &lt;-5,-6,-2&gt;$ and $v = &lt;-3,10,8&gt;$. Are $u$ and $v$ orthogonal? ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the projection of $u = <3,-12>$ onto $v = <9,2>$
Find the projection of $u = <3,-12>$ onto $v = <9,2>$Find the projection of $u = &lt;3,-12&gt;$ onto $v = &lt;9,2&gt;$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
What is the dot product $(\mathbf{u}-2 \mathbf{v}) \cdot(3 \mathbf{u}+4 \mathbf{v})$
What is the dot product $(\mathbf{u}-2 \mathbf{v}) \cdot(3 \mathbf{u}+4 \mathbf{v})$What is the dot product $(\mathbf{u}-2 \mathbf{v}) \cdot(3 \mathbf{u}+4 \mathbf{v})$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $A$ and $B$ are $4 \times 4$ matrices such that $\operatorname{rank}(A B)=3$, then $\operatorname{rank}(B A)<4$.
If $A$ and $B$ are $4 \times 4$ matrices such that $\operatorname{rank}(A B)=3$, then $\operatorname{rank}(B A)<4$.For each of the following, answer TRUE or FALSE. If the statement is false in even a single instance, then the answer is FALSE. There is no need to ju ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
What is a dot/scalar product?
What is a dot/scalar product?What is a dot/scalar product? ...
close
Let $\mathbf{u}$ be a vector in $R^{100}$ whose $i$ th component is $i$, and let $\mathbf{v}$ be the vector in $R^{100}$ whose $i$ th component is $1 /(i+1)$. Find the dot product of $\mathbf{u}$ and $\mathbf{v}$.Let $\mathbf{u}$ be a vector in $R^{100}$ whose $i$ th component is $i$, and let $\mathbf{v}$ be the vector in $R^{100}$ whose $i$ th component is $1 ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Let$a, b$and$c$be vectors in$\mathrm{R}^{3}, \times$denotes the cross product, . the dot product. Which of the following is false? 0 answers 206 views Let$a, b$and$c$be vectors in$\mathrm{R}^{3}, \times$denotes the cross product, . the dot product. Which of the following is false?Let$a, b$and$c$be vectors in$\mathrm{R}^{3}, \times$denotes the cross product, . the dot product. Which of the following is false? A.$-a \time ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
What is the norm of the vector $\mathbf{v}=(2,-1,3,-5)$ in $R^{4}$?
What is the norm of the vector $\mathbf{v}=(2,-1,3,-5)$ in $R^{4}$?What is the norm of the vector $\mathbf{v}=(2,-1,3,-5)$ in $R^{4}$? ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $a, b$ and $c$ be vectors in $\mathrm{R}^{3}$, such that $a \cdot(b \times c)=0$. Then
Let $a, b$ and $c$ be vectors in $\mathrm{R}^{3}$, such that $a \cdot(b \times c)=0$. ThenLet $a, b$ and $c$ be vectors in $\mathrm{R}^{3}$, such that $a \cdot(b \times c)=0$. Then A. $a, b$ and $c$ are colinear B. $a, b$ and $c$ lie on t ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Normalize the vector $v=(1,-3,4,2)$
Normalize the vector $v=(1,-3,4,2)$Normalize the vector $v=(1,-3,4,2)$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the function $f \in \operatorname{span}\{1 \sin x, \cos x\}$ that minimizes $\|\sin 2 x-f(x)\|$, where the norm comes from the inner product
Find the function $f \in \operatorname{span}\{1 \sin x, \cos x\}$ that minimizes $\|\sin 2 x-f(x)\|$, where the norm comes from the inner productFind the function $f \in \operatorname{span}\{1 \sin x, \cos x\}$ that minimizes $\|\sin 2 x-f(x)\|$, where the norm comes from the inner product ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Calculate $\mathbf{u} \cdot \mathbf{v}$ for the following vectors in $R^{4}$ : $$\mathbf{u}=(-1,3,5,7), \quad \mathbf{v}=(-3,-4,1,0)$$
Calculate $\mathbf{u} \cdot \mathbf{v}$ for the following vectors in $R^{4}$ : $$\mathbf{u}=(-1,3,5,7), \quad \mathbf{v}=(-3,-4,1,0)$$Calculate $\mathbf{u} \cdot \mathbf{v}$ for the following vectors in $R^{4}$ : $$\mathbf{u}=(-1,3,5,7), \quad \mathbf{v}=(-3,-4,1,0)$$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $\vec{a}$ and $\vec{b}$ be non-zero, non parallel vectors. Identify proj $\vec{a} \vec{b}$ geometrically in the diagram.
Let $\vec{a}$ and $\vec{b}$ be non-zero, non parallel vectors. Identify proj $\vec{a} \vec{b}$ geometrically in the diagram. Let $\vec{a}$ and $\vec{b}$ be non-zero, non parallel vectors. Identify proj $\vec{a} \vec{b}$ geometrically in the diagram. &nbsp; &nbsp; ...