# arrow_back In the following problem, $b$, and $c$. REAL NUMBERS. The derivative of $g(x)=\log _{a}(b x)+c x^{2}$ is:

53 views

In the following problem, $b$, and $c$. REAL NUMBERS.The derivative of $g(x)=\log _{a}(b x)+c x^{2}$ is:

1. $g^{\prime}(x)= \dfrac{b\log_a(b x)}{\ln a}+2cx$
2. $g^{\prime}(x)= \dfrac {b\log -a(b x)+2 cx}{\ln a}$
3. $g^{\prime}(x)=\dfrac{a\log_{a}(b x)}{ \ln b}+2(x)$
4. $g^{\prime}(x)=\dfrac{b\log -a(b x)}{(\ln a}$
5. $g^{\prime}(x)=b\log - a(b x)+2(x)$
6. $g^{\prime}(x)=\dfrac{b \log _{a}(b x)}{ \ln a}+2c$

$g^{\prime}(x)= \dfrac{b\log_a(b x)}{\ln a}+2cx$

by Platinum
(106,844 points)

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $a$ and $b$ are real numbers, solve the following equation: $(a+2) x-b=-2+(a+b) x$
If $a$ and $b$ are real numbers, solve the following equation: $(a+2) x-b=-2+(a+b) x$If $a$ and $b$ are real numbers, solve the following equation: $(a+2) x-b=-2+(a+b) x$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $a, b$ and $c$ be positive real numbers. Show that $$(a+b+c)(a b+b c+c a) \geq 9 a b c .$$
Let $a, b$ and $c$ be positive real numbers. Show that $$(a+b+c)(a b+b c+c a) \geq 9 a b c .$$Let $a, b$ and $c$ be positive real numbers. Show that $$(a+b+c)(a b+b c+c a) \geq 9 a b c .$$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $a, b, c$ be positive real numbers such that $a b c=1$. Prove that
Let $a, b, c$ be positive real numbers such that $a b c=1$. Prove thatLet $a, b, c$ be positive real numbers such that $a b c=1$. Prove that $$\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{b+a}{\sqrt{c}} \geq \sqrt{a} ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 If a, b, c are distinct +ve real numbers and a^{2}+b^{2}+c^{2}=1 then a b+b c+c a is 1 answer 70 views If a, b, c are distinct +ve real numbers and a^{2}+b^{2}+c^{2}=1 then a b+b c+c a isIf a, b, c are distinct +ve real numbers and a^{2}+b^{2}+c^{2}=1 then a b+b c+c a is 1) less than 1 2) equal to 1 3) greater than 1 4) any real ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Let a and b be positive real numbers. Show that$$ \frac{1}{a}+\frac{1}{b} \geq \frac{4}{a+b} $$0 answers 53 views Let a and b be positive real numbers. Show that$$ \frac{1}{a}+\frac{1}{b} \geq \frac{4}{a+b} $$Let a and b be positive real numbers. Show that$$ \frac{1}{a}+\frac{1}{b} \geq \frac{4}{a+b} $$... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Let a>b be positive real numbers. What is the minimum value of$$ a+\frac{1}{b(a-b)} ? $$1 answer 175 views Let a>b be positive real numbers. What is the minimum value of$$ a+\frac{1}{b(a-b)} ? $$Let a&gt;b be positive real numbers. What is the minimum value of$$ a+\frac{1}{b(a-b)} ?  ...
Find all pairs of positive real numbers such that $a^{3}+b^{3}+1=3 a b$.
Find all pairs of positive real numbers such that $a^{3}+b^{3}+1=3 a b$.Find all pairs of positive real numbers such that $a^{3}+b^{3}+1=3 a b$. ...