# arrow_back One possible integrating factor for the following linear differential equation is $X \frac{d Y}{d X}+(X+1) Y=3 X^{2} e^{-X}$

91 views

One possible integrating factor for the following linear differential equation is

$X \frac{d Y}{d X}+(X+1) Y=3 X^{2} e^{-X}$

1. $X e^{x}$
2. $e^{X}$
3. $X+\ln X$
4. None of these

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Show that the solution of the above differential equation is $$y=\frac{1}{2}\left(\mathrm{e}^{2 x}+3\right) \cos x .$$ Show that the solution of the above differential equation is $$y=\frac{1}{2}\left(\mathrm{e}^{2 x}+3\right) \cos x .$$$$\frac{d y}{d x}+y \tan x=\mathrm{e}^{2 x} \cos x, y(0)=2 \text {. }$$ Show that the solution of the above differential equation is y=\frac{1}{2 ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Evaluate \lim _{x \rightarrow 1}\left(\frac{y-4 \sqrt{y}+3}{y^{2}-1}\right) 1 answer 213 views close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Given $y=\sqrt{x^{7}}-\frac{5}{x^{3}}$ Which of the following is equivalent to $y$ ? 1 answer 51 views Given $y=\sqrt{x^{7}}-\frac{5}{x^{3}}$ Which of the following is equivalent to $y$ ?Given \ y=\sqrt{x^{7}}-\frac{5}{x^{3}} \ Which of the following is equivalent to $y$ ? \begin{align} \begin{array}{|l|l|} \hline \text { A } &amp ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Calculate the $\mathrm{y}$-intercept of $y=\left(\frac{1}{2}\right)^{x}$. 1 answer 61 views close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 If g(x)=2 x^{3}+\ln x is the derivative of f(x), find \lim _{x \rightarrow 0} \frac{f(1+x)-f(1)}{x} 
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve $\frac{3 x^{2}+2 x+3}{1}+\frac{12}{3 x^{2}+2 x+3}=7$
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the limit $\lim _{x \rightarrow \infty} \frac{3 x+1}{|x|+2}$
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the limit $\lim _{x \rightarrow \infty} \frac{6 x^{2}-4 x^{5}+7 x-1}{12 x^{5}-3 x^{2}+2}$
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the limit $\lim _{x \rightarrow \infty} \frac{x^{3}-6 x+1}{x^{2}+2 x-3}$
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Evaluate $\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}-2 x-3}{x^{2}-1}\right)$
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Evaluate $\lim_{x \to \infty } \left ( \frac{2x^{2}-2x-3}{x^{2}-1} \right )$
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Simplify $\left(\dfrac{2 x^{3}}{8 y^{-4}}\right)^{-3}$
If $f(x)=\frac{4-5 x}{2}$, and $g(x)=x+6, x \in R$, find $f \circ g^{-1}$. If $f(x)=\frac{4-5 x}{2}$, and $g(x)=x+6, x \in R$, find $f \circ g^{-1}$.(a) If $f(x)=\frac{4-5 x}{2}$, and $g(x)=x+6, x \in R$, find $f \circ g^{-1}$. (b) $P(x, y)$ divides the line joining $(7,-5)$ and \((-2,7) ...