# arrow_back Determine whether the series $\sum_{n \geq 1} \dfrac{1}{\sqrt{n^{3}}}$ converges or diverges. Give a reason for your answer.

49 views
Determine whether the series $\sum_{n \geq 1} \dfrac{1}{\sqrt{n^{3}}}$ converges or diverges. Give a reason for your answer.

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine whether the following series converge or diverge. $\sum_{n=1}^{\infty}(-1)^{n}\left(\dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}\right)^{n}$
Determine whether the following series converge or diverge. $\sum_{n=1}^{\infty}(-1)^{n}\left(\dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}\right)^{n}$Determine whether the following series converge or diverge. $\sum_{n=1}^{\infty}(-1)^{n}\left(\dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}\right)^{n}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine if the following series converge $\sum_{n=1}^{\infty} 3^{3 n} 7^{2-n}$
Determine if the following series converge $\sum_{n=1}^{\infty} 3^{3 n} 7^{2-n}$Determine if the following series converge $\sum_{n=1}^{\infty} 3^{3 n} 7^{2-n}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine the value of the series: $\sum_{n=1}^{5}(3 n+2)$
Determine the value of the series: $\sum_{n=1}^{5}(3 n+2)$Determine the value of the series: \ \sum_{n=1}^{5}(3 n+2) \ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine if the following series converge $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
Determine if the following series converge $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$Determine if the following series converge $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine the value of the series: $\sum_{k=4}^{7} 2 k$
Determine the value of the series: $\sum_{k=4}^{7} 2 k$Determine the value of the series: \ \sum_{k=4}^{7} 2 k \ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Decide (with reasons) if the following series converge or diverge.$\sum_{n=1}^{\infty}\left(\frac{5-n+3 n^{2}}{7 n^{2}-19}\right)^{n}$
Decide (with reasons) if the following series converge or diverge.$\sum_{n=1}^{\infty}\left(\frac{5-n+3 n^{2}}{7 n^{2}-19}\right)^{n}$Decide (with reasons) if the following series converge or diverge.$\sum_{n=1}^{\infty}\left(\frac{5-n+3 n^{2}}{7 n^{2}-19}\right)^{n}$ ...
close
Determine, giving reasons, whether the sequence $\left\{a_{n}\right\}=\left\{\dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}\right\}$ is convergent or divergent. If it is convergent, find the value to which it converges.Determine, giving reasons, whether the sequence $\left\{a_{n}\right\}=\left\{\dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}\right\}$ is convergent or diverge ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine whether the following series converge or diverge. $\sum_{n=1}^{\infty} \dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}$
Determine whether the following series converge or diverge. $\sum_{n=1}^{\infty} \dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}$Determine whether the following series converge or diverge. $\sum_{n=1}^{\infty} \dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Decide (with reasons) if the following series converge or diverge. $\sum_{n=1}^{\infty}(-1)^{n} \frac{5-n+3 n^{2}}{7 n^{2}-19}$
Decide (with reasons) if the following series converge or diverge. $\sum_{n=1}^{\infty}(-1)^{n} \frac{5-n+3 n^{2}}{7 n^{2}-19}$Decide (with reasons) if the following series converge or diverge. $\sum_{n=1}^{\infty}(-1)^{n} \frac{5-n+3 n^{2}}{7 n^{2}-19}$ ...
close
Determine, giving reasons, whether the sequence $$\left\{a_{n}\right\}=\left\{\frac{5-n+3 n^{2}}{7 n^{2}-19}\right\}$$ is convergent or divergent. If it is convergent, state to what value it converges.Determine, giving reasons, whether the sequence $$\left\{a_{n}\right\}=\left\{\frac{5-n+3 n^{2}}{7 n^{2}-19}\right\}$$ is convergent or divergent. I ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Show that the series $\sum_{n=2}^{\infty} \dfrac{2}{n(n+1)}$ converges and find its limit.
Show that the series $\sum_{n=2}^{\infty} \dfrac{2}{n(n+1)}$ converges and find its limit.Show that the series $\sum_{n=2}^{\infty} \dfrac{2}{n(n+1)}$ converges and find its limit. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Show that the series $\sum_{r=1}^{\infty}\left(\dfrac{1}{r+2}-\frac{2}{r+1}+\dfrac{1}{r}\right)$ converges and find its sum.
Show that the series $\sum_{r=1}^{\infty}\left(\dfrac{1}{r+2}-\frac{2}{r+1}+\dfrac{1}{r}\right)$ converges and find its sum.Show that the series $\sum_{r=1}^{\infty}\left(\dfrac{1}{r+2}-\frac{2}{r+1}+\dfrac{1}{r}\right)$ converges and find its sum. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Prove that if the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$
Prove that if the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$Prove that if the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Prove that if the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Prove that if the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.Prove that if the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$. ...
Find the sum of the series $\sum_{n \geq 2} \frac{2}{n^{2}-1}$
Find the sum of the series $\sum_{n \geq 2} \frac{2}{n^{2}-1}$Find the sum of the series $\sum_{n \geq 2} \frac{2}{n^{2}-1}$ ...