# arrow_back What is the product of $A$, $B$ and $C$?

8 views
$$\text { Given } A=\left[\begin{array}{ll} 4 & 5 \end{array}\right], B=\left[\begin{array}{llll} 1 & 1 & 2 & 1 \end{array}\right], C=\left[\begin{array}{ll} 1 & 2 \\ 7 & 1 \\ 5 & 1 \\ 0 & 1 \end{array}\right] \text {, then: }$$

A. $A C B$ is $2 \times 2$

B. $A B C$ is $2 \times 4$

C. $C B A$ is $4 \times 2$

D. $B C A$ is $1 \times 2$

E. none of the given answers is correct

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $\underline{a}=(2,1,-1)$ and $\underline{b}=(-1,2,1)$, then $2 \underline{a}-3 \underline{b}$ is equal to
If $\underline{a}=(2,1,-1)$ and $\underline{b}=(-1,2,1)$, then $2 \underline{a}-3 \underline{b}$ is equal toIf $\underline{a}=(2,1,-1)$ and $\underline{b}=(-1,2,1)$, then $2 \underline{a}-3 \underline{b}$ is equal to &nbsp; A) $(1,-4,-5)$ B) $(7,-4,5)$ C ...
close
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $\vec{a}=(2,1,-1)$ and $\vec{b}=(-1,2,1)$, then $2 \vec{a}-3 \vec{b}$ is equal to
If $\vec{a}=(2,1,-1)$ and $\vec{b}=(-1,2,1)$, then $2 \vec{a}-3 \vec{b}$ is equal toIf $\vec{a}=(2,1,-1)$ and $\vec{b}=(-1,2,1)$, then $2 \vec{a}-3 \vec{b}$ is equal to &nbsp; A) $(1,-4,-5)$ B) $(7,-4,5)$ C) $(7,-4,-5)$ D) $(7,4, ... close 0 answers 12 views Let$z_{1}=\left|z_{1}\right|\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)$and$z_{2}=\left|z_{2}\right|\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right)$be two complex numbers.Let$z_{1}=\left|z_{1}\right|\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)$and$z_{2}=\left|z_{2}\right|\left(\cos \left(\ ...
close
Let $A$ be an $n \times n$ matrix with $I_{n}$ the identity matrix. The statement det $A \neq 0$ is equivalent to:
Let $A$ be an $n \times n$ matrix with $I_{n}$ the identity matrix. The statement det $A \neq 0$ is equivalent to:Let $A$ be an $n \times n$ matrix with $I_{n}$ the identity matrix. The statement det $A \neq 0$ is equivalent to: &nbsp; A. All the given options a ...
Let $A$ and $B$ be $n \times n$ matrices. Which of the following is true?
Let $A$ and $B$ be $n \times n$ matrices. Which of the following is true?Let $A$ and $B$ be $n \times n$ matrices. Which of the following is true? &nbsp; A) $\operatorname{det}(A)=\operatorname{det}(-A)$ B) \$\operatornam ...