# arrow_back The augmented matrix of a system $A X=B$ has been transformed using elementary row operations to ...

7 views

\begin{aligned}
&\text { The augmented matrix of a system } A X=B \text { has been transformed using elementary row }\\
&\text { operations to }\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & -1 \\
0 & 1 & 1 & -1 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \text {. Then the system } A X=B \text { has: }
\end{aligned}

A. exactly one unique solution

B. exactly two unique solutions

C. no solution

D. infinitely many solutions

E. none of these answers is correct

## Related questions

$$\text { The rank of the coefficient matrix } A=\left[\begin{array}{ccc} 1 & 2 & -3 \\ 3 & -1 & 5 \\ 4 & 1 & 2 \end{array}\right] \text { equals: }$$ \text { The rank of the coefficient matrix } A=\left\begin{array}{ccc} 1 &amp; 2 &amp; -3 \\ 3 &amp; -1 &amp; 5 \\ 4 &amp; 1 &amp; 2 ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $A$ is a $5 \times 5$ matrix with $\operatorname{det} A=-1$, compute $\operatorname{det}(-2 A)$.
If $A$ is a $5 \times 5$ matrix with $\operatorname{det} A=-1$, compute $\operatorname{det}(-2 A)$.If $A$ is a $5 \times 5$ matrix with $\operatorname{det} A=-1$, compute $\operatorname{det}(-2 A)$. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $A$ is a $5 \times 5$ matrix with $\operatorname{det} A=-1$, compute $\operatorname{det}(-2 A)$.
If $A$ is a $5 \times 5$ matrix with $\operatorname{det} A=-1$, compute $\operatorname{det}(-2 A)$.If $A$ is a $5 \times 5$ matrix with $\operatorname{det} A=-1$, compute $\operatorname{det}(-2 A)$. ...
close
close
Which of the following systems has augmented matrix $$\left[\begin{array}{cccc} 1 & 4 & 0 & 6 \\ 4 & 2 & -1 & 0 \\ 0 & 1 & 5 & -6 \end{array}\right] \text { ? }$$Which of the following systems has augmented matrix \$\left\begin{array}{cccc}1 &amp; 4 &amp; 0 &amp; 6 \\ 4 &amp; 2 &amp; -1 &amp; 0 \\ 0 &amp; 1 &am ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right)$.
Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right)$.Let $A=\left(\begin{array}{lll}1 &amp; 1 &amp; 2 \\ 1 &amp; 1 &amp; 2 \\ 1 &amp; 1 &amp; 2\end{array}\right)$. a) What is the dimension of the image ...
Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 & 0 & 4 \\ 1 & 2 & 7 \\ 6 & 4 & 22 \end{array}\right)$$
Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 & 0 & 4 \\ 1 & 2 & 7 \\ 6 & 4 & 22 \end{array}\right)$$Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 &amp; 0 &amp; 4 \\ 1 &amp; 2 &amp; 7 \\ 6 &amp; 4 &amp; 22 \end{array}\right)$$ ...