arrow_back The augmented matrix of a system $A X=B$ has been transformed using elementary row operations to ...

7 views

\begin{equation}
\begin{aligned}
&\text { The augmented matrix of a system } A X=B \text { has been transformed using elementary row }\\
&\text { operations to }\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & -1 \\
0 & 1 & 1 & -1 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \text {. Then the system } A X=B \text { has: }
\end{aligned}
\end{equation}

A. exactly one unique solution

B. exactly two unique solutions

C. no solution

D. infinitely many solutions

E. none of these answers is correct

Related questions

close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $A$ is a $5 \times 5$ matrix with $\operatorname{det} A=-1$, compute $\operatorname{det}(-2 A)$.
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $A$ is a $5 \times 5$ matrix with $\operatorname{det} A=-1$, compute $\operatorname{det}(-2 A)$.
close
close
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right)$. Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right)$.Let $A=\left(\begin{array}{lll}1 &amp; 1 &amp; 2 \\ 1 &amp; 1 &amp; 2 \\ 1 &amp; 1 &amp; 2\end{array}\right)$. a) What is the dimension of the image ...
Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 & 0 & 4 \\ 1 & 2 & 7 \\ 6 & 4 & 22 \end{array}\right)$$ Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 & 0 & 4 \\ 1 & 2 & 7 \\ 6 & 4 & 22 \end{array}\right)$$Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 &amp; 0 &amp; 4 \\ 1 &amp; 2 &amp; 7 \\ 6 &amp; 4 &amp; 22 \end{array}\right)$$ ...