# arrow_back Find the inverse of the matrix $$A=\left(\begin{array}{lll} 4 & 3 & 4 \\ 5 & 4 & 6 \\ 4 & 3 & 3 \end{array}\right)$$

6 views
Find the inverse of the matrix $$A=\left(\begin{array}{lll} 4 & 3 & 4 \\ 5 & 4 & 6 \\ 4 & 3 & 3 \end{array}\right)$$

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 & 0 & 4 \\ 1 & 2 & 7 \\ 6 & 4 & 22 \end{array}\right)$$
Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 & 0 & 4 \\ 1 & 2 & 7 \\ 6 & 4 & 22 \end{array}\right)$$Find the inverse of the matrix $$A=\left(\begin{array}{rrr} 2 &amp; 0 &amp; 4 \\ 1 &amp; 2 &amp; 7 \\ 6 &amp; 4 &amp; 22 \end{array}\right)$$ ...
close
close
Which of the following systems has augmented matrix $$\left[\begin{array}{cccc} 1 & 4 & 0 & 6 \\ 4 & 2 & -1 & 0 \\ 0 & 1 & 5 & -6 \end{array}\right] \text { ? }$$Which of the following systems has augmented matrix \$\left\begin{array}{cccc}1 &amp; 4 &amp; 0 &amp; 6 \\ 4 &amp; 2 &amp; -1 &amp; 0 \\ 0 &amp; 1 &am ...
close
$$\text { The rank of the coefficient matrix } A=\left[\begin{array}{ccc} 1 & 2 & -3 \\ 3 & -1 & 5 \\ 4 & 1 & 2 \end{array}\right] \text { equals: }$$ \text { The rank of the coefficient matrix } A=\left\begin{array}{ccc} 1 &amp; 2 &amp; -3 \\ 3 &amp; -1 &amp; 5 \\ 4 &amp; 1 &amp; 2 ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right)$.
Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right)$.Let $A=\left(\begin{array}{lll}1 &amp; 1 &amp; 2 \\ 1 &amp; 1 &amp; 2 \\ 1 &amp; 1 &amp; 2\end{array}\right)$. a) What is the dimension of the image ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Diagonalize the matrix $A=\left(\begin{array}{lll} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array}\right)$
Diagonalize the matrix $A=\left(\begin{array}{lll} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array}\right)$Diagonalize the matrix \ A=\left(\begin{array}{lll} 1 &amp; 0 &amp; 2 \\ 0 &amp; 1 &amp; 0 \\ 2 &amp; 0 &amp; 1 \end{array}\right) \ by finding the ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the inverse of matrix shown below. $$\left[\begin{array}{ll} 2 & 0 \\ 0 & 0 \end{array}\right]$$
Find the inverse of matrix shown below. $$\left[\begin{array}{ll} 2 & 0 \\ 0 & 0 \end{array}\right]$$Find the inverse of matrix shown below. $$\left\begin{array}{ll} 2 &amp; 0 \\ 0 &amp; 0 \end{array}\right$$ ...