# arrow_back Find the value of $\mathrm{k}$ if the constant term in the expansion $\left(\mathrm{k} x-\frac{1}{x^{2}}\right)^{6}$ is 240 .

53 views
Find the value of $\mathrm{k}$ if the constant term in the expansion $\left(\mathrm{k} x-\frac{1}{x^{2}}\right)^{6}$ is 240 .

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find a formula in terms of $n$ for $\sum_{r=1}^{n}\left(3 r^{2}+r-2\right)$. Simplify your answer fully.
Find a formula in terms of $n$ for $\sum_{r=1}^{n}\left(3 r^{2}+r-2\right)$. Simplify your answer fully. Find a formula in terms of $n$ for $\sum_{r=1}^{n}\left(3 r^{2}+r-2\right)$. Simplify your answer fully. &nbsp; NB: You may find the following ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the sum of the first three terms of $\sum_{r=1}^{n}\left(3 r^{2}+r-2\right)$
Find the sum of the first three terms of $\sum_{r=1}^{n}\left(3 r^{2}+r-2\right)$\begin{aligned} &amp;\text { Find the sum of the first three terms of } \sum_{r=1}^{n}\left(3 r^{2}+r-2\right) \text {. } \end{aligned} ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the first 3 terms in ascending powers of $x$ of the binomial expansion of $\left(2+\frac{x}{2}\right)^{6}$
Find the first 3 terms in ascending powers of $x$ of the binomial expansion of $\left(2+\frac{x}{2}\right)^{6}$(a) Find the first 3 terms in ascending powers of $x$ of the binomial expansion of $\left(2+\frac{x}{2}\right)^{6}$ (b) Use your expansion to fin ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
The function $f(x)=\frac{x^{3}-6 x}{x^{2}-4}$ is
The function $f(x)=\frac{x^{3}-6 x}{x^{2}-4}$ isThe function $f(x)=\dfrac{x^{3}-6 x}{x^{2}-4}$ is &nbsp; A. even and has two vertical asymptotes, B. odd and has two vertical asymptotes, C. even ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the first four terms, in ascending powers of $x$, of the binomial expansion $(2+k x)^{6}$ Given that the coefficient of the $x^{3}$ term in the expansion is $-20$
Find the first four terms, in ascending powers of $x$, of the binomial expansion $(2+k x)^{6}$ Given that the coefficient of the $x^{3}$ term in the expansion is $-20$(a) Find the first four terms, in ascending powers of $x$, of the binomial expansion $(2+k x)^{6}$ Given that the coefficient of the $x^{3}$ ter ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the first three terms in the binomial expansion of $\left(x - \dfrac{2}{x}\right)^5$.
Find the first three terms in the binomial expansion of $\left(x - \dfrac{2}{x}\right)^5$.Find the first three terms in the binomial expansion of $\left(x - \dfrac{2}{x}\right)^5$. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the first three terms in the binomial expansion of $(8-3x)^{\frac{1}{3}}$. Simplify each term.
Find the first three terms in the binomial expansion of $(8-3x)^{\frac{1}{3}}$. Simplify each term.Find the first three terms in the binomial expansion of $(8-3x)^{\frac{1}{3}}$. Simplify each term. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find $\lim _{x \rightarrow 0}(1-\sin x)^{\frac{3}{x}}$
Find $\lim _{x \rightarrow 0}(1-\sin x)^{\frac{3}{x}}$Find $\lim _{x \rightarrow 0}(1-\sin x)^{\frac{3}{x}}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find partial fractions of $f(x)=\frac{4}{x^{3}-2 x^{2}-3 x}$
Find partial fractions of $f(x)=\frac{4}{x^{3}-2 x^{2}-3 x}$Find partial fractions of $f(x)=\frac{4}{x^{3}-2 x^{2}-3 x}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the first four terms in the binomial expansion $(1-y^{-1})^{17}$. Simplify each term
Find the first four terms in the binomial expansion $(1-y^{-1})^{17}$. Simplify each termFind the first four terms in the binomial expansion $(1-y^{-1})^{17}$. Simplify each term ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Write $\frac{9-x^{2}}{x^{3}+9 x}$ in terms of its partial fractions.
Write $\frac{9-x^{2}}{x^{3}+9 x}$ in terms of its partial fractions.Write $\frac{9-x^{2}}{x^{3}+9 x}$ in terms of its partial fractions. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the first three terms, in ascending powers of $x$, of the binomial expansion $(1-2 x)^{5}$
Find the first three terms, in ascending powers of $x$, of the binomial expansion $(1-2 x)^{5}$(a) Find the first three terms, in ascending powers of $x$, of the binomial expansion $(1-2 x)^{5}$ (b) Find the first three terms, in ascending ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Expand $\left(x^{1/2} - 2y^{1/3}\right)^4$ using the binomial theorem
Expand $\left(x^{1/2} - 2y^{1/3}\right)^4$ using the binomial theoremExpand $\left(x^{1/2} - 2y^{1/3}\right)^4$ using the binomial theorem ...
Determine, giving reasons, whether the sequence $\left\{a_{n}\right\}=\left\{\dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}\right\}$ is convergent or divergent. If it is convergent, find the value to which it converges.Determine, giving reasons, whether the sequence $\left\{a_{n}\right\}=\left\{\dfrac{n^{3}-1+n^{2} \sin n}{1+3 n^{3}}\right\}$ is convergent or diverge ...
The rational function $\frac{x^{5}+1}{\left(x^{2}-1\right)^{2}}$ has a partial fraction expansion of the form
The rational function $\frac{x^{5}+1}{\left(x^{2}-1\right)^{2}}$ has a partial fraction expansion of the formThe rational function $\frac{x^{5}+1}{\left(x^{2}-1\right)^{2}}$ has a partial fraction expansion of the form A. \$\quad f(x)=G x^{2}+F x+\frac{A}{(x- ...