arrow_back Find the orthogonal projections of the vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ on the line $L$ that makes an angle $\theta$ with the positive $x$-axis in $R^{2}$.

8 views
Find the orthogonal projections of the vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ on the line $L$ that makes an angle $\theta$ with the positive $x$-axis in $R^{2}$.

$\mathbf{a}=(\cos \theta, \sin \theta)$ is a unit vector along the line $L$, so our first problem is to find the orthogonal projection of $\mathbf{e}_{1}$ along a. Since $$\|\mathbf{a}\|=\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}=1 \text { and } \mathbf{e}_{1} \cdot \mathbf{a}=(1,0) \cdot(\cos \theta, \sin \theta)=\cos \theta$$ it follows that this projection is $$\operatorname{proj}_{\mathbf{a}} \mathbf{e}_{1}=\frac{\mathbf{e}_{1} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}=(\cos \theta)(\cos \theta, \sin \theta)=\left(\cos ^{2} \theta, \sin \theta \cos \theta\right)$$ Similarly, since $\mathbf{e}_{2} \cdot \mathbf{a}=(0,1) \cdot(\cos \theta, \sin \theta)=\sin \theta$, it follows that $$\operatorname{proj}_{\mathbf{a}} \mathbf{e}_{2}=\frac{\mathbf{e}_{2} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}=(\sin \theta)(\cos \theta, \sin \theta)=\left(\sin \theta \cos \theta, \sin ^{2} \theta\right)$$
by Platinum
(106,844 points)

Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find an orthogonal basis for $\mathcal{S}$ and use it to find the $3 \times 3$ matrix $P$ that projects vectors orthogonally into $\mathcal{S}$. Find an orthogonal basis for $\mathcal{S}$ and use it to find the $3 \times 3$ matrix $P$ that projects vectors orthogonally into $\mathcal{S}$.Let $\mathcal{S} \subset \mathbb{R}^{3}$ be the subspace spanned by the two vectors $v_{1}=(1,-1,0)$ and $v_{2}=$ $(1,-1,1)$ and let \(\mathca ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the intercepts on the $x$ - and $y$-axes (if any) for the function $f(x)=\frac{x^{2}-3}{x+2}$ and discuss symmetry.
close
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Is it possible to have $\operatorname{proj}_{\mathrm{a}} \mathbf{u}=\operatorname{proj}_{\mathbf{u}} \mathbf{a} ?$ Explain.
Show that $\mathbf{u}=(-2,3,1,4)$ and $\mathbf{v}=(1,2,0,-1)$ are orthogonal vectors in $R^{4}$.
Find the equation of the plane that contains the $z$-axis and the point $(3,1,2)$.