menu

arrow_back Find the orthogonal projections of the vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ on the line $L$ that makes an angle $\theta$ with the positive $x$-axis in $R^{2}$.

by Platinum
(106,844 points)
in Mathematics
8 views
Find the orthogonal projections of the vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ on the line $L$ that makes an angle $\theta$ with the positive $x$-axis in $R^{2}$.

1 Answer

Best answer
0 like 0 dislike
$\mathbf{a}=(\cos \theta, \sin \theta)$ is a unit vector along the line $L$, so our first problem is to find the orthogonal projection of $\mathbf{e}_{1}$ along a. Since $$ \|\mathbf{a}\|=\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}=1 \text { and } \mathbf{e}_{1} \cdot \mathbf{a}=(1,0) \cdot(\cos \theta, \sin \theta)=\cos \theta $$ it follows that this projection is $$ \operatorname{proj}_{\mathbf{a}} \mathbf{e}_{1}=\frac{\mathbf{e}_{1} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}=(\cos \theta)(\cos \theta, \sin \theta)=\left(\cos ^{2} \theta, \sin \theta \cos \theta\right) $$ Similarly, since $\mathbf{e}_{2} \cdot \mathbf{a}=(0,1) \cdot(\cos \theta, \sin \theta)=\sin \theta$, it follows that $$ \operatorname{proj}_{\mathbf{a}} \mathbf{e}_{2}=\frac{\mathbf{e}_{2} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}=(\sin \theta)(\cos \theta, \sin \theta)=\left(\sin \theta \cos \theta, \sin ^{2} \theta\right) $$
by Platinum
(106,844 points)

Related questions


Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find an orthogonal basis for \(\mathcal{S}\) and use it to find the \(3 \times 3\) matrix \(P\) that projects vectors orthogonally into \(\mathcal{S}\).

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the intercepts on the $x$ - and $y$-axes (if any) for the function $f(x)=\frac{x^{2}-3}{x+2}$ and discuss symmetry.
0 answers 6 views
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Is it possible to have $\operatorname{proj}_{\mathrm{a}} \mathbf{u}=\operatorname{proj}_{\mathbf{u}} \mathbf{a} ?$ Explain.
0 answers 7 views
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Show that $\mathbf{u}=(-2,3,1,4)$ and $\mathbf{v}=(1,2,0,-1)$ are orthogonal vectors in $R^{4}$.
1 answer 13 views
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the equation of the plane that contains the $z$-axis and the point $(3,1,2)$.
0 answers 11 views
close

Join the MathsGee Homework Help Q&A club where you get study support for success from our verified experts. Subscribe for only R100 per month or R960 per year.


On the MathsGee Homework Help Q&A learning community, you can:


  1. Ask questions
  2. Answer questions
  3. Comment on Answers
  4. Vote on Questions and Answers
  5. Donate to your favourite users
  6. Create/Take Live Video Lessons

Posting on the MathsGee Homework Help Q&A learning community


  1. Remember the human
  2. Behave like you would in real life
  3. Look for the original source of content
  4. Search for duplicates before posting
  5. Read the community's rules

MathsGee is Zero-Rated (You do not need data to access) on: Telkom |Dimension Data | Rain | MWEB

MathsGee Tools

Math Worksheet Generator

Math Algebra Solver

Trigonometry Simulations

Vectors Simulations

Matrix Arithmetic Simulations

Matrix Transformations Simulations

Quadratic Equations Simulations

Probability & Statistics Simulations

PHET Simulations

Visual Statistics

Management Leadership | MathsGee ZOOM | eBook | H5P