arrow_back Verify that the Cauchy–Schwarz inequality holds for $\mathbf{u}=(1,2,1,2,3), \mathbf{v}=(0,1,1,5,-2)$

13 views
Verify that the Cauchy&ndash;Schwarz inequality holds for $\mathbf{u}=(1,2,1,2,3), \mathbf{v}=(0,1,1,5,-2)$

Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Verify that the Cauchy–Schwarz inequality holds for $\mathbf{u}=(0,2,2,1), \mathbf{v}=(1,1,1,1)$
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Verify that the Cauchy-Schwarz inequality holds. $\mathbf{u}=(0,2,2,1), \mathbf{v}=(1,1,1,1)$
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Verify that the Cauchy–Schwarz inequality holds for $\mathbf{u}=(4,1,1), \mathbf{v}=(1,2,3)$
close
Show that two nonzero vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ in $R^{3}$ are orthogonal if and only if their direction cosines satisfy Show that two nonzero vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ in $R^{3}$ are orthogonal if and only if their direction cosines satisfyShow that two nonzero vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ in $R^{3}$ are orthogonal if and only if their direction cosines satisfy  \cos \ ...
Find all vectors in the plane (through the origin) spanned by $\mathbf{V}=(1,1-2)$ and $\mathbf{W}=(-1,1,1)$ that are perpendicular to the vector $\mathbf{Z}=(2,1,2)$.