# arrow_back Given $y=\sqrt{x^{7}}-\frac{5}{x^{3}}$ Which of the following is equivalent to $y$ ?

16 views
Given
$y=\sqrt{x^{7}}-\frac{5}{x^{3}}$
Which of the following is equivalent to $y$ ?

\begin{align}
\begin{array}{|l|l|}
\hline \text { A } & x^{14}-5 x^{-3} \\
\hline \text { B } & x^{\frac{7}{2}}+5 x^{-3} \\
\hline \text { C } & x^{\frac{7}{2}}-5 x^{-3} \\
\hline \text { D } & x^{\frac{7}{2}}-5 x^{\frac{1}{3}} \\
\hline
\end{array}
\end{align}

Identify the correct expression for $y$
Looking at the first term:
\begin{aligned} y_{1} &=\sqrt{x^{7}} \\ &=\left(x^{7}\right)^{\frac{1}{2}} \\ &=x^{\frac{7}{2}} \end{aligned}
And then looking at the second term:
\begin{aligned} y_{2} &=-\frac{5}{x^{3}} \\ &=-5 x^{-3} \end{aligned}
Putting these together gives us:
\begin{aligned} y &=y_{1}+y_{2} \\ &=x^{\frac{7}{2}}-5 x^{-3} \end{aligned}
So the correct choice is Option $\mathbf{C}$.
by Platinum
(106,888 points)

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Given that $\frac{6 x+m}{2 x^{2}+7 x-15} \equiv \frac{4}{x+5}-\frac{2}{2 x-3}$, find the value of $m$.
Given that $\frac{6 x+m}{2 x^{2}+7 x-15} \equiv \frac{4}{x+5}-\frac{2}{2 x-3}$, find the value of $m$.Given that $\dfrac{6 x+m}{2 x^{2}+7 x-15} \equiv \dfrac{4}{x+5}-\dfrac{2}{2 x-3}$, find the value of $m$. A. 20 B. 12 C. $-10$ D. $-22$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Evaluate $\lim _{x \rightarrow 1}\left(\frac{y-4 \sqrt{y}+3}{y^{2}-1}\right)$
Evaluate $\lim _{x \rightarrow 1}\left(\frac{y-4 \sqrt{y}+3}{y^{2}-1}\right)$Evaluate $\lim _{x \rightarrow 1}\left(\frac{y-4 \sqrt{y}+3}{y^{2}-1}\right)$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the limit $\lim _{x \rightarrow \infty} \frac{6 x^{2}-4 x^{5}+7 x-1}{12 x^{5}-3 x^{2}+2}$
Find the limit $\lim _{x \rightarrow \infty} \frac{6 x^{2}-4 x^{5}+7 x-1}{12 x^{5}-3 x^{2}+2}$Find the limit $\lim _{x \rightarrow \infty} \dfrac{6 x^{2}-4 x^{5}+7 x-1}{12 x^{5}-3 x^{2}+2}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
One possible integrating factor for the following linear differential equation is $X \frac{d Y}{d X}+(X+1) Y=3 X^{2} e^{-X}$
One possible integrating factor for the following linear differential equation is $X \frac{d Y}{d X}+(X+1) Y=3 X^{2} e^{-X}$ One possible integrating factor for the following linear differential equation is \ X \frac{d Y}{d X}+(X+1) Y=3 X^{2} e^{-X} \ &nbsp; ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find $$\lim _{x \rightarrow 0} \frac{\sqrt{1+x}+(1+x)^{7}-2}{x} .$$
Find $$\lim _{x \rightarrow 0} \frac{\sqrt{1+x}+(1+x)^{7}-2}{x} .$$Find $$\lim _{x \rightarrow 0} \frac{\sqrt{1+x}+(1+x)^{7}-2}{x} .$$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Show that the solution of the above differential equation is $$y=\frac{1}{2}\left(\mathrm{e}^{2 x}+3\right) \cos x .$$
Show that the solution of the above differential equation is $$y=\frac{1}{2}\left(\mathrm{e}^{2 x}+3\right) \cos x .$$$$\frac{d y}{d x}+y \tan x=\mathrm{e}^{2 x} \cos x, y(0)=2 \text {. }$$ Show that the solution of the above differential equation is  y=\frac{1}{2 ...
Given that $f(x)=5 x^{2}-4 x+3$, find the coordinates of the point where the gradient is 6
Given that $f(x)=5 x^{2}-4 x+3$, find the coordinates of the point where the gradient is 6Given that $f(x)=5 x^{2}-4 x+3$, find the coordinates of the point where the gradient is 6 A. $(4,1)$ B. $(4,-2)$ C. $(1,4)$ D. $(1,-2)$ ...