0 like 0 dislike
335 views
Which of the following are not a basis for the vector space of all symmetric $2 \times 2$ matrices? Why?

a) $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
b) $\left(\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
c) $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 2 & -3\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
d) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-2 & -2 \\ -2 & 1\end{array}\right)$
e) $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
f) $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
| 335 views

0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
0 like 0 dislike
1 like 0 dislike
0 like 0 dislike