Let \(U \subset V\) and \(W\) be finite dimensional linear spaces and \(L: V \rightarrow W\) a linear map. Show that
\operatorname{dim}\left(\left.\operatorname{ker} L\right|_{U}\right) \leq \operatorname{dim} \operatorname{ker} L=\operatorname{dim} V-\operatorname{dim} \operatorname{Im}(L)
55% Accept Rate Accepted 8191 answers out of 14789 questions

Please log in or register to answer this question.

This site uses cookies to provide quality services and to analyze traffic. For more information, see the Privacy Policy