Give an example of a matrix \(A\) with the following three properties:
i). \(A\) has eigenvalues \(-1\) and 2 .
ii). The eigenvalue \(-1\) has eigenvector \(\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\).
iii). The eigenvalue 2 has eigenvectors \(\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\) and \(\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\).