Rewriting the formula
$$\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$$
we can rearrange and obtain
$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$
Since $0 \leq \theta \leq \pi$, it follows and properties of the cosine function studied in trigonometry that
- $-\theta$ is acute if $\mathbf{u} \cdot \mathbf{v}>0$
- $ \theta$ is obtuse if $\mathbf{u} \cdot \mathbf{v}<0 $
- $\theta=\pi / 2$ if $\mathbf{u} \cdot \mathbf{v}=0$.