;
Learning starts with a question. Asking is a signal for knowledge request!
First time here? Checkout the FAQs!
x

*Math Image Search only works best with SINGLE, zoomed in, well cropped images of math. No selfies and diagrams please :)

1 like 0 dislike
593 views
Prove that if

$\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$ are vectors in $R^{n}$, and if $k$ and $m$ are scalars, then: (a) $ \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (b) $ (\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ (c) $ \mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$ (d) $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ (e) $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$ (f) $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$ (g) $k(m \mathbf{u})=(k m) \mathbf{u}$ (h) $ \mathbf{l u}=\mathbf{u}$
in Mathematics by Platinum (101k points) | 593 views

1 Answer

0 like 0 dislike
(a) To prove this statement, we can write out the components of the vectors $\mathbf{u}$ and $\mathbf{v}$:

$$\mathbf{u} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} v_1 \ v_2 \ \vdots \ v_n \end{pmatrix}$$

Then, the vector $\mathbf{u} + \mathbf{v}$ is given by:

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 \ u_2 + v_2 \ \vdots \ u_n + v_n \end{pmatrix}$$

Similarly, the vector $\mathbf{v} + \mathbf{u}$ is given by:

$$\mathbf{v} + \mathbf{u} = \begin{pmatrix} v_1 + u_1 \ v_2 + u_2 \ \vdots \ v_n + u_n \end{pmatrix}$$

Since $u_i + v_i = v_i + u_i$ for all $i$, it follows that $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.

(b) To prove this statement, we can again write out the components of the vectors $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$:

$$\mathbf{u} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} v_1 \ v_2 \ \vdots \ v_n \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} w_1 \ w_2 \ \vdots \ w_n \end{pmatrix}$$

Then, the vector $(\mathbf{u} + \mathbf{v}) + \mathbf{w}$ is given by:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \begin{pmatrix} u_1 + v_1 \ u_2 + v_2 \ \vdots \ u_n + v_n \end{pmatrix} + \begin{pmatrix} w_1 \ w_2 \ \vdots \ w_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 + w_1 \ u_2 + v_2 + w_2 \ \vdots \ u_n + v_n + w_n \end{pmatrix}$$

Similarly, the vector $\mathbf{u} + (\mathbf{v} + \mathbf{w})$ is given by:

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix} + \begin{pmatrix}

v_1 + w_1 \ v_2 + w_2 \ \vdots \ v_n + w_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 + w_1 \ u_2 + v_2 + w_2 \ \vdots \ u_n + v_n + w_n \end{pmatrix}$$

Since $u_i + v_i + w_i = u_i + (v_i + w_i)$ for all $i$, it follows that $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.

(c) To prove this statement, we can again write out the components of the vector $\mathbf{u}$:

$$\mathbf{u} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix}$$

Then, the vector $\mathbf{u} + \mathbf{0}$ is given by:

$$\mathbf{u} + \mathbf{0} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix} + \begin{pmatrix} 0 \ 0 \ \vdots \ 0 \end{pmatrix} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix}$$

Similarly, the vector $\mathbf{0} + \mathbf{u}$ is given by:

$$\mathbf{0} + \mathbf{u} = \begin{pmatrix} 0 \ 0 \ \vdots \ 0 \end{pmatrix} + \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix}$$

Since $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u}$, it follows that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$.

(d) To prove this statement, we can again write out the components of the vector $\mathbf{u}$:

$$\mathbf{u} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix}$$

Then, the vector $\mathbf{u} + (-\mathbf{u})$ is given by:

$$\mathbf{u} + (-\mathbf{u}) = \begin{pmatrix} u_1 \ u_2 \ \vdots

\ u_n \end{pmatrix} + \begin{pmatrix} -u_1 \ -u_2 \ \vdots \ -u_n \end{pmatrix} = \begin{pmatrix} u_1 - u_1 \ u_2 - u_2 \ \vdots \ u_n - u_n \end{pmatrix} = \begin{pmatrix} 0 \ 0 \ \vdots \ 0 \end{pmatrix} = \mathbf{0}$$

Thus, $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

(e) To prove this statement, we can again write out the components of the vectors $\mathbf{u}$ and $\mathbf{v}$:

$$\mathbf{u} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} v_1 \ v_2 \ \vdots \ v_n \end{pmatrix}$$

Then, the vector $k(\mathbf{u} + \mathbf{v})$ is given

$$k(\mathbf{u} + \mathbf{v}) = k \begin{pmatrix} u_1 + v_1 \ u_2 + v_2 \ \vdots \ u_n + v_n \end{pmatrix} = \begin{pmatrix} k(u_1 + v_1) \ k(u_2 + v_2) \ \vdots \ k(u_n + v_n) \end{pmatrix} = \begin{pmatrix} ku_1 + kv_1 \ ku_2 + kv_2 \ \vdots \ ku_n + kv_n \end{pmatrix} = k\mathbf{u} + k\mathbf{v}$$

Thus, $k(\mathbf{u} + \mathbf{v}) = k \mathbf{u}+k \mathbf{v}$.

(f) To prove this statement, we can again write out the components of the vector $\mathbf{u}$:

$$\mathbf{u} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix}$$

Then, the vector $(k+m)\mathbf{u}$ is given by:

$$(k+m)\mathbf{u} = (k+m) \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix} = \begin{pmatrix} (k+m)u_1 \ (k+m)u_2 \ \vdots \ (k+m)u_n \end{pmatrix} = \begin{pmatrix} ku_1 + mu_1 \ ku_2 + mu_2 \ \vdots \ ku_n + mu_n \end{pmatrix} = k\mathbf{u} + m\mathbf{u}$$

Thus, $k(m\mathbf{u}) = (km)\mathbf{u}$.

(h) To prove this statement, we can again write out the components of the vector $\mathbf{u}$:

$$\mathbf{u} = \begin{pmatrix} u_1 \ u_2 \ \vdots \ u_n \end{pmatrix}$$

Then, the vector $\mathbf{0}$ is given by:

$$\mathbf{0} = \begin{pmatrix} 0 \ 0 \ \vdots \ 0 \end{pmatrix}$$

Since $u_i = 0$ for all $i$, it follows that $\mathbf{u} = \mathbf{0}$.

Therefore, all of the statements are true.
by Platinum (101k points)
edited by

Related questions

1 like 0 dislike
1 answer
1 like 0 dislike
0 answers
1 like 0 dislike
0 answers
1 like 0 dislike
1 answer

Join MathsGee Q&A, where you get instant answers to your questions from our AI, AstraNova and verified by human experts. We use a combination of generative AI and human experts to provide you the best solutions to your problems.

On the MathsGee Q&A, you can:

1. Get instant answer to your questions

2. Convert image to latex

3. AI-generated answers and insights

4. Get expert-verified answers

5. Vote on questions and answers

6. Tip your favorite community members

7. Join expert live video sessions (Paid/Free)

8. Earn points by participating

9. Take a course

10. Enjoy our interactive learning resources


Posting on the MathsGee Q&A

1. Remember the human

2. Act like you would in real life

3. Find original source of content

4. Check for duplicates before publishing

5. Read the community guidelines


MathsGee Q&A Rules

1. Answers to questions will be posted immediately after moderation

2. Questions will be queued for posting immediately after moderation

3. Depending on the number of messages we receive, you could wait up to 24 hours for your message to appear. But be patient as posts will appear after passing our moderation.


MathsGee Q&A


Acalytica


Social Proof


Web Analytics


Courses