Geometric sequences are the discrete version of exponential functions, which are continuous.
Explanation:
Geometric sequences are formed by choosing a starting value and generating each subsequent value by multiplying the previous value by some constant called the geometric ratio. If a formula is provided, terms of the sequence are calculated by substituting \(n=0,1,2,3, \ldots\) into the formula. Note how only whole numbers are used, because it doesn't make sense to have a "one and three-quarterth" term. With an exponential function, the inputs can be any real number from negative infinity to positive infinity.