Let \(a=3x^2+x\), then the equation becomes:
\[ \dfrac{a-1}{1}+\dfrac{1}{a-3}=0 \]
Multiply all terms by the LCD which is \(a-3\)
\[(a-3)(a-1)+\dfrac{1}{a-3}\cdot (a-3)=0\]
removing the brackets gives:
\[ a^2-a-3a+3a+1=0\]
\[a^2-4a+4=0\]
\[a^-2a-2a+4=0\]
\[a(a-2)-2(a-2)=0\]
\[(a-2)^2=0\]
thus
\[a=2 \quad \text{twice}\]
Now remember that
\[3x^2+x=2\]
\[3x^2+x-2=0\]
\[3x^2+3x-2x-2=0\]
\[3x(x+1)-2(x+1)=0\]
\[(x+1)(3x-2)=0\]
\[\therefore x=-1 \quad OR \quad x=\dfrac{2}{3}\]