Learning starts with a question. Asking is a signal for knowledge request!
First time here? Checkout the FAQs!

Math Image Search excels with single, zoomed-in, well-cropped math images (jpg/png); avoid selfies/diagrams; view demos for Math Image Search Demo and Ask a Question Using Text/Image Demo.

1 like 0 dislike
A calculator is defective: it can only add, subtract, and multiply. Use the equation \(1 / x=1.37\), the Newton Method, and the defective calculator to find \(1 / 1.37\) correct to 8 decimal places.
in Mathematics by Platinum (93,243 points) | 535 views

1 Answer

1 like 0 dislike
Best answer
For convenience we write \(a\) instead of \(1.37\). Then \(1 / a\) is the root of the equation
f(x)=0 \text { where } f(x)=a-\frac{1}{x} .
We have \(f^{\prime}(x)=1 / x^{2}\), and therefore the Newton Method yields the iteration
x_{n+1}=x_{n}-\frac{a-1 / x_{n}}{1 / x_{n}^{2}}=x_{n}-x_{n}^{2}\left(a-1 / x_{n}\right)=x_{n}\left(2-a x_{n}\right) .
Note that the expression \(x_{n}\left(2-a x_{n}\right)\) can be evaluated on our defective calculator, since it only involves multiplication and subtraction.

Pick \(x_{0}\) reasonably close to \(1 / 1.37\). The choice \(x_{0}=1\) would work out fine, but I will start off a little closer, maybe by noting that \(1.37\) is about \(4 / 3\) so its reciprocal is about \(3 / 4\). Choose \(x_{0}=0.75\). We will report answers as they come out of the calculator.
We get \(x_{1}=x_{0}\left(2-1.37 x_{0}\right)=0.729375\). Thus \(x_{2}=0.729926589\), and \(x_{3}=0.729927007\). And it turns out that \(x_{4}=x_{3}\) to the 9 decimal places that my calculator shows. So we can be reasonably confident that \(1 / 1.37\) is equal to \(0.72992701\) to 8 decimal places.

I went out and spent almost \(\$ 9\) on a calculator with a " \(1 / x\) " button. It tells me that \(1 / 1.37\) is indeed equal to \(x_{3}\) to 9 decimal places. But it was not necessary to spend all that money. To check that \(0.72992701\) is correct to 8 decimal places, it is enough to check by multiplication that \((1.37)(0.729927005)<1\) and \((1.37)(0.729927015)>1\).

Note. In the early days of computing, the technique for finding \(1 / a\) described above was of great practical importance. Computers had addition, subtraction, and multiplication "hard-wired." But division was not hard-wired, and had to be done by software. Note that \(x / y=\) \(x(1 / y)\), so if multiplication is hard-wired, we can do division if we can find reciprocals. And Newton's Method was used to do that.
by Platinum (93,243 points)

Related questions

1 like 0 dislike
1 answer
1 like 0 dislike
0 answers
1 like 0 dislike
1 answer
1 like 0 dislike
1 answer
2 like 0 dislike
1 answer
1 like 0 dislike
1 answer
asked May 9, 2021 in Mathematics by Student Bronze Status (5,672 points) | 5,649 views

Join MathsGee Questions & Answers, where you get instant answers to your questions from our AI, GaussTheBot and verified by human experts. We use a combination of generative AI and human experts to provide you the best solutions to your problems.

On the MathsGee Questions & Answers, you can:

1. Get instant answer to your questions

2. Convert image to latex

3. AI-generated answers and insights

4. Get expert-verified answers

5. Vote on questions and answers

6. Tip your favorite community members

7. Join expert live video sessions (Paid/Free)

8. Earn points by participating

9. Take a course

10. Enjoy our interactive learning resources

Posting on the MathsGee Questions & Answers

1. Remember the human

2. Act like you would in real life

3. Find original source of content

4. Check for duplicates before publishing

5. Read the community guidelines

MathsGee Questions & Answers Rules

1. Answers to questions will be posted immediately after moderation

2. Questions will be queued for posting immediately after moderation

3. Depending on the number of messages we receive, you could wait up to 24 hours for your message to appear. But be patient as posts will appear after passing our moderation.

MathsGee Questions & Answers

MathsGee Questions & Answers

MathJax.Hub.Config({ tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], config: ["MMLorHTML.js"], jax: ["input/TeX"], processEscapes: true } }); MathJax.Hub.Config({ "HTML-CSS": { linebreaks: { automatic: true } } });