;
Learning starts with a question. Asking is a signal for knowledge request!
First time here? Checkout the FAQs!
x

*Math Image Search only works best with SINGLE, zoomed in, well cropped images of math. No selfies and diagrams please :)

1 like 0 dislike
1.1k views
Use the Newton Method to find the smallest and the second smallest positive roots of the equation \(\tan x=4 x\), correct to 4 decimal places.
in Mathematics by Platinum (102k points) | 1.1k views

1 Answer

1 like 0 dislike
Best answer
Solution: Draw the curves \(y=\tan x\) and \(y=4 x\). The roots of our equation are the \(x\)-coordinates of the places where these two curves meet.

A glance at the picture shows that (for \(x \geq 0\) ) the curves meet at \(x=0\), then at a point with \(x\) just shy of \(\pi / 2\), and then again at a point with \(x\) just shy of \(3 \pi / 2\) (the pattern continues).

We first find the root that is near \(\pi / 2\). Let \(f(x)=\tan x-4 x\). The \(f^{\prime}(x)=\sec ^{2} x-4\), and the Newton Method recurrence is
\[
x_{n+1}=x_{n}-\frac{\tan x_{n}-4 x_{n}}{\sec ^{2} x_{n}-4} .
\]
Some simplification is possible. For example, we can use the identity \(\sec ^{2} x=1+\tan ^{2} x\) to rewrite the recurrence as
\[
x_{n+1}=x_{n}-\frac{\tan x_{n}-4 x_{n}}{\tan ^{2} x_{n}-3} .
\]
This trick cuts down on the computational work. This was a particularly important consideration in the old days when computations were done by hand, with the aid of tables and slide rules.

For the first root, a bit of fooling around suggests taking \(x_{0}=1.4\). Then \(x_{1}=1.393536477, x_{2}=1.393249609\), and \(x_{3}=1.393249075\). This suggests that to 4 decimal places the root is \(1.3932\). We can verify this by the sign change criterion in the usual way.

For the second root, after some work we can for example arrive at the initial estimate \(x_{0}=4.66\). The computation is quite sensitive to the right choice of initial value. And then we get \(x_{1}=4.658806388\) and \(x_{2}=4.658778278\). To 4 decimal places the root is \(4.6588\). We can verify that we are close enough by the sign change criterion.

Note. We may be nervous about using a casual sketch to locate the first two positive roots. If we are, we can analyze the behaviour of \(f(x)\) by looking at its derivative \(f^{\prime}(x)\). Recall that \(f^{\prime}(x)=\sec ^{2} x-4\). The sec function increases steadily in the interval \((0, \pi / 2)\). It follows that \(f^{\prime}(x)\) is negative in this interval up to the point where \(f^{\prime}(x)=0\), which happens when \(\sec x=2\), that is, when \(\cos x=1 / 2\), at \(\pi / 3\). So \(f(x)\) decreases from \(x=0\) to \(x=\pi / 3\), then increases. Since \(f(0)=0\), we conclude that \(f\) is negative in the interval \((0, \pi / 3)\), then increases. It becomes very large positive near \(x=\pi / 2\). So \(f(x)=0\) in exactly one place in the interval \((0, \pi / 2)\). In a similar way, we can show that \(f(x)=0\) at exactly one place in the interval \((\pi / 2,3 \pi / 2)\).

Note. We attacked the problem in the 'natural' way, making the most obvious choice for \(f(x)\). It turns out that, particularly for the second positive root, and even more so say for the fifth positive root, we have to be very careful in our choice of \(x_{0}\). The problem is that near the roots the tan function is growing at a violent rate. A quite small change in \(x\) can have a dramatic effect on \(\tan x\).

We can rewrite the equation \(\tan x=4 x\) in ways that avoid most of the problems. For instance, rewrite it as \(g(x)=0\) where \(g(x)=\) \(\sin x-4 x \cos x\). The Newton-Raphson recurrence becomes
\[
x_{n+1}=x_{n}-\frac{\sin x_{n}-4 x_{n} \cos x_{n}}{4 x_{n} \sin x_{n}-3 \cos x_{n}} .
\]
Calculations with this recurrence are quite a bit more numerically stable than calculations with the 'natural' recurrence that we used earlier.
by Platinum (102k points)

Related questions

1 like 0 dislike
0 answers
1 like 0 dislike
1 answer
1 like 0 dislike
1 answer
2 like 0 dislike
1 answer
1 like 0 dislike
1 answer
asked May 9, 2021 in Mathematics by Student Bronze Status (5.7k points) | 5.9k views
3 like 1 dislike
1 answer

Join MathsGee Q&A, where you get instant answers to your questions from our AI, AstraNova and verified by human experts. We use a combination of generative AI and human experts to provide you the best solutions to your problems.

On the MathsGee Q&A, you can:

1. Get instant answer to your questions

2. Convert image to latex

3. AI-generated answers and insights

4. Get expert-verified answers

5. Vote on questions and answers

6. Tip your favorite community members

7. Join expert live video sessions (Paid/Free)

8. Earn points by participating

9. Take a course

10. Enjoy our interactive learning resources


Posting on the MathsGee Q&A

1. Remember the human

2. Act like you would in real life

3. Find original source of content

4. Check for duplicates before publishing

5. Read the community guidelines


MathsGee Q&A Rules

1. Answers to questions will be posted immediately after moderation

2. Questions will be queued for posting immediately after moderation

3. Depending on the number of messages we receive, you could wait up to 24 hours for your message to appear. But be patient as posts will appear after passing our moderation.


MathsGee Q&A


Acalytica


Social Proof


Web Analytics


Courses