# arrow_back Determine the values of $x$ and $y$ in the sequence $7 ; x ; y ;-11 ; \ldots$

51 views
Determine the values of $x$ and $y$ in the sequence $7 ; x ; y ;-11 ; \ldots$

$x=1$ and $y=-5$

Explanation:

\begin{aligned}
7 ; x ; y ; &-11 ; \ldots \\
a &=7 \\
a+3 d &=-11 \\
7+3 d &=-11 \\
d &=-6 \\
x &=a+d=7+(-6)=1 \\
y &=a+2 d=7+2(-6)=-5
\end{aligned}

OR

\begin{aligned}
a+3 d &=-11 \\
3 d &=-11-7 \\
3 d &=-18 \\
d &=-6 \\
x &=1 \\
y &=-5
\end{aligned}

OR

\begin{aligned}
&(1) \text { into }(2) \\
&2(2 x-7)=-11+x \\
&4 x-14=-11+x \\
&3 x=3 \\
&x=1 \\
&y=2(1)-7=-5
\end{aligned}

by Gold Status
(30,543 points)

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Grade 12 Paper 1 - $7 ; x ; y ;-11 ; \ldots$ is an arithmetic sequence. Determine the values of $x$ and $y$.
Grade 12 Paper 1 - $7 ; x ; y ;-11 ; \ldots$ is an arithmetic sequence. Determine the values of $x$ and $y$.$7 ; x ; y ;-11 ; \ldots$ is an arithmetic sequence. Determine the values of $x$ and $y$. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the 10th and 100th terms of the sequence $3,5,7,9,11, \ldots$
Find the 10th and 100th terms of the sequence $3,5,7,9,11, \ldots$Find the 10th and 100th terms of the sequence $3,5,7,9,11, \ldots$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find an expression for the nth term of the sequence $3,7,11,15,19, \ldots$
Find an expression for the nth term of the sequence $3,7,11,15,19, \ldots$Find an expression for the &nbsp;nth term of the sequence $3,7,11,15,19, \ldots$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Grade 12 - Paper 1 - Given the quadratic number pattern: $-3 ; 6 ; 27 ; 60 ; \ldots$
Grade 12 - Paper 1 - Given the quadratic number pattern: $-3 ; 6 ; 27 ; 60 ; \ldots$Given the quadratic number pattern: $-3 ; 6 ; 27 ; 60 ; \ldots$ 1. $\quad$ Determine the general term of the pattern in the form $T_{n}=a n^{2}+b n+c$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine $T_{7}$ in the sequence $-18 ;-12 ;-6 ; \ldots \ldots$
Determine $T_{7}$ in the sequence $-18 ;-12 ;-6 ; \ldots \ldots$Determine $T_{7}$ in the sequence $-18 ;-12 ;-6 ; \ldots \ldots$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If a sequence is quadratic, how do I determine the $n^{\text {th }}$ term?
If a sequence is quadratic, how do I determine the $n^{\text {th }}$ term?If a sequence is quadratic, how do I determine the $n^{\text {th }}$ term? ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
$5;x;y$ is an arithmetic sequence and $x;y;81$ is a geometric sequence. All terms in the sequences are integers. Calculate the values of $x$ and $y$.
$5;x;y$ is an arithmetic sequence and $x;y;81$ is a geometric sequence. All terms in the sequences are integers. Calculate the values of $x$ and $y$.$5;x;y$ is an arithmetic sequence and $x;y;81$ is a geometric sequence. All terms in the sequences are integers. Calculate the values of $x$ and $y$. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Find the number of terms in the arithmetic sequence $-5 ;-11 ;-17 ; \ldots ;-491$
Find the number of terms in the arithmetic sequence $-5 ;-11 ;-17 ; \ldots ;-491$Find the number of terms in the arithmetic sequence $-5 ;-11 ;-17 ; \ldots ;-491$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If 2; x; 18; ... are the first three terms of a geometric sequence, determine the value(s) of x.
If 2; x; 18; ... are the first three terms of a geometric sequence, determine the value(s) of x.If 2; x; 18; ... are the first three terms of a geometric sequence, determine the value(s) of x. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
In a geometric sequence, $T_{4}=-16$ and $T_{9}=512$. Determine the first three terms of the sequence.
In a geometric sequence, $T_{4}=-16$ and $T_{9}=512$. Determine the first three terms of the sequence.In a geometric sequence, $T_{4}=-16$ and $T_{9}=512$. Determine the first three terms of the sequence. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Given the sequence $4 ;x;32$ Determine the values of $x$ if the sequence is arithmetic and geometric
Given the sequence $4 ;x;32$ Determine the values of $x$ if the sequence is arithmetic and geometricGiven the sequence $4 ;x;32$ Determine the values of $x$ if the sequence is arithmetic and geometric ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Determine if $f(x, y)=x \ln (4 y)+\sqrt{x+y}$ is increasing or decreasing at $(-3,6)$ if
Determine if $f(x, y)=x \ln (4 y)+\sqrt{x+y}$ is increasing or decreasing at $(-3,6)$ ifDetermine if $f(x, y)=x \ln (4 y)+\sqrt{x+y}$ is increasing or decreasing at $(-3,6)$ if (a) we allow $x$ to vary and hold $y$ fixed. (b) we ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
The following sequence forms a convergent geometric sequence: $5x ; x^{2} ; \frac{x^{3}}{5} ; ...$
The following sequence forms a convergent geometric sequence: $5x ; x^{2} ; \frac{x^{3}}{5} ; ...$ The following sequence forms a convergent geometric sequence: $5x ; x^{2} ; \frac{x^{3}}{5} ; ...$ Determine the possible values of $x$ If ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
A quadratic pattern is given by $T_n=n^2+b_n+c$. Find the values of $b$ and $c$ if the sequence starts with the following terms: $−1;2;7;14;…$
A quadratic pattern is given by $T_n=n^2+b_n+c$. Find the values of $b$ and $c$ if the sequence starts with the following terms: $−1;2;7;14;…$A quadratic pattern is given by $T_n=n^2+b_n+c$. Find the values of $b$ and $c$ if the sequence starts with the following terms: $−1;2;7;14;…$ ...