Answer:
\(1\)
Explanation:
\(x+\frac{1}{x}=1\)
\(\Rightarrow \quad x^{2}+1=x\)
\(\Rightarrow x^{2}-x+1=0\)
\(\Rightarrow(x-1)\left(x^{2}-x+1\right)=0\)
\(\Rightarrow x^{3}-1=0\)
\(\Rightarrow x^{3}=1 .\)
Given the expression:
\[
x^{29}+\dfrac{1}{x^{89}}
\]
\(=\dfrac{x^{30}}{x}+\dfrac{x}{x^{90}}\)
\(=\dfrac{\left(x^{3}\right)^{10}}{x}+\dfrac{x}{\left(x^{3}\right)^{30}}\)
\(=\dfrac{1}{x}+\frac{x}{1}\)
\(=\dfrac{1}{x}+x=1\)