Let's solve your equation step-by-step.
\[
x^{2}+16 x-72=0
\]
For this equation: \(a=1, b=16, c=-72\)
\[
1 x^{2}+16 x+-72=0
\]
Step 1: Use quadratic formula with \(a=1, b=16, c=-72\).
\[
\begin{aligned}
&x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
&x=\frac{-(16) \pm \sqrt{(16)^{2}-4(1)(-72)}}{2(1)} \\
&x=\frac{-16 \pm \sqrt{544}}{2} \\
&x=-8+2 \sqrt{34} \text { or } x=-8-2 \sqrt{34}
\end{aligned}
\]
Answer:
\[
x=-8+2 \sqrt{34} \text { or } x=-8-2 \sqrt{34}
\]