Answer:
\[
4 x-5
\]
Explanation:
Let's find the derivative step-by-step.
\(\frac{d}{d x}\left(2 x^{2}-5 x-3\right)\)
Use the power rule.
\[
\begin{aligned}
&\frac{d}{d x}\left(2 x^{2}+-5 x^{1}-3\right) \\
&=\frac{d}{d x}\left(2 x^{2}\right)+\frac{d}{d x}\left(-5 x^{1}\right)+\frac{d}{d x}(-3) \\
&=2 * 2 x^{2-1}+-5 * 1 x^{1-1}+0 \\
&=2 * 2 x^{1}+-5 *(1)(1)+0 \\
&=4 x^{1}+(-5)(1)+0 \\
&=4 x-5
\end{aligned}
\]
Answer:
\[
4 x-5
\]