1 like 0 dislike
30 views
A jar has 5 red and 10 blue marbles. I pick a handful of 4 marbles out. Let $X$ be the number of red marbles in my hand. Find the pmf of $X$, find its expected value and its variance.
| 30 views

0 like 0 dislike
The probability that you draw $x$ red marbles is
$P(X=x)=\frac{\left({ }_{5} C_{x}\right)\left({ }_{10} C_{4-x}\right)}{{ }_{15} C_{4}}$
So the probability mass function is given by

\begin{array}{c|c}
x & f(x) \\
\hline 0 & (1)(210) / 1365=2 / 13 \\
1 & (5)(120) / 1365=40 / 91 \\
2 & (10)(45) / 1365=30 / 91 \\
3 & (10)(10) / 1365=20 / 273 \\
4 & (5)(1) / 1365=1 / 273
\end{array}

The expected value is
$E(X)=0\left(\frac{2}{13}\right)+1\left(\frac{40}{91}\right)+2\left(\frac{30}{91}\right)+3\left(\frac{20}{273}\right)+4\left(\frac{1}{273}\right)=\frac{4}{3}$
Variance is calculated by
\begin{aligned} \operatorname{Var}(X) &=E\left(X^{2}\right)-E(X)^{2} \\ &=0^{2}\left(\frac{2}{13}\right)+1^{2}\left(\frac{40}{91}\right)+2^{2}\left(\frac{30}{91}\right)+3^{2}\left(\frac{20}{273}\right)+4^{2}\left(\frac{1}{273}\right)-\left(\frac{4}{3}\right)^{2} \\ & \approx .6984 \end{aligned}
by Diamond (40,719 points)

1 like 0 dislike
0 like 0 dislike
1 like 0 dislike
1 like 0 dislike
1 like 0 dislike
2 like 0 dislike
2 like 0 dislike
2 like 0 dislike
1 like 0 dislike