Given that
\[^{n}P_{r}=\dfrac{n!}{(n-r)!}\]
and
\[^{n}C_{r}=\dfrac{n!}{r!(n-r)!}\]
then
\[^{n} P_{r}:^{n} C_{r}= \dfrac{\dfrac{n!}{(n-r)!}}{\dfrac{n!}{r!(n-r)!}}\]
\[= \dfrac{n!}{(n-r)!} \times \dfrac{r!(n-r)!}{n!} = r! = 120\]
i.e.
\[r\cdot (r-1) \cdot (r-2) \cdot (r-3) \ldots (2) \cdot (1) = 120\]
\[\therefore r!=5!=120\]
Given the nature of the relation between combinations and permutations, \(n\) could be anything.