In the diagram below, \(\mathrm{DCB}=\alpha, \mathrm{AC}=h\) units and \(\mathrm{ACB}=\theta\).

- Determine size of \(\mathrm{ACD}\) in terms of \(\theta\) and \(\alpha\).
- Prove that \(\mathrm{AD}=\frac{h \sin (\theta-\alpha)}{\cos \alpha}\)
- Determine the length of \(\mathrm{AD}\) if \(h=17\) units, \(\theta=58^{\circ}\) and \(\alpha=23^{\circ}\).
- Calculate the area of \(\triangle \mathrm{ADC}\).