MathsGee Answers is Zero-Rated (You do not need data to access) on: Telkom | Dimension Data | Rain | MWEB
First time here? Checkout the FAQs!
x
MathsGee is Zero-Rated (You do not need data to access) on: Telkom |Dimension Data | Rain | MWEB

0 like 0 dislike
51 views
Consider a circle, with centre $O$. Choose a point $P$ outside the circle. Draw two tangents to the circle from point $P$, that meet the circle at $A$ and $B$. Draw lines $OA$, $OB$ and $OP$.

Prove that $AP=BP$
in Mathematics by Wooden (2,056 points) | 51 views

1 Answer

0 like 0 dislike
<OAP=OBP= 90 DEGREES tangents

line 0A is a bisector of <APB

Therefore AP=BP ,equiangular
by Diamond (43,618 points)

Related questions

0 like 0 dislike
1 answer
0 like 0 dislike
1 answer
0 like 0 dislike
1 answer
0 like 0 dislike
1 answer
0 like 0 dislike
1 answer
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

MathsGee provides answers to subject-specific educational questions for improved outcomes.



On MathsGee Answers, you can:


1. Ask questions
2. Answer questions
3. Comment on Answers
4. Vote on Questions and Answers
5. Donate to your favourite users

MathsGee Tools

Math Worksheet Generator

Math Algebra Solver

Trigonometry Simulations

Vectors Simulations

Matrix Arithmetic Simulations

Matrix Transformations Simulations

Quadratic Equations Simulations

Probability & Statistics Simulations

PHET Simulations

Visual Statistics

ZeroEd Search Engine

Other Tools

MathsGee ZOOM | eBook