Learning starts with a question
First time here? Checkout the FAQs!

*Math Image Search only works best with zoomed in and well cropped math screenshots. Check DEMO

MathsGee Android Q&A

0 like 0 dislike
Let \(S\) be a group of all such values in the interval \([-1,1]\), which have the property that for the series \(x_0, x_1, x_2, \ldots\), defined by equations \(x_0=t, x_{n+1}=2 x_n^2-1\), there exists a positive integer \(N\) such that \(x_n=1\) for each \(n \geq N\). Prove that there are infinitely many values in the group \(S\).
in Mathematics by Platinum (147,754 points) | 44 views

Related questions

Join MathsGee, where you get quality STEM education support from our community of verified experts fast.

On the MathsGee, you can:

1. Ask questions

2. Get expert answers

3. Vote on questions and answers

4. Tip your favorite community members

5. Join expert live video sessions (Paid/Free)

6. Earn points by participating

Posting on MathsGee

1. Remember the human

2. Act like you would in real life

3. Find original source of content

4. Check for duplicates before publishing

5. Read the community guidelines

MathsGee Rules

1. Answers to questions will be posted immediately after moderation

2. Questions will be queued for posting immediately after moderation

3. Depending on the number of messages we receive, you could wait up to 24 hours for your message to appear. But be patient as posts will appear after passing our moderation.

MathsGee Android Q&A

MathsGee Android Q&A