Simplify the following:
(a) \(\dfrac{\cos \left(180^{\circ}-\theta\right) \cdot \cos \left(90^{\circ}-\theta\right)}{\sin \left(90^{\circ}+\theta\right) \cdot \sin \left(-\theta-180^{\circ}\right)}\)
(b) \(\dfrac{\cos \left(180^{\circ}+\theta\right) \cdot \tan (-\theta)}{\sin \left(360^{\circ}-\theta\right) \cdot \tan \left(720^{\circ}+\theta\right)}\)
(c) \(\dfrac{\cos \left(90^{\circ}-\theta\right)}{\sin \left(180^{\circ}-\theta\right)}-\sin ^2(-\theta)\)
(d) \(\dfrac{\cos ^2(180+x)-\tan 225^{\circ}}{\cos ^2\left(90^{\circ}+x\right)}\)