To show that \(\{\|x\|_\alpha: \alpha \in (0,1)\}\) is an ascending family of norms, we need to show that for any \(0\lt \alpha_1\lt;\alpha_2\lt 1\) and any \(x \in V\), we have \(\|x\|_{\alpha_1} \leq \|x\|_{\alpha_2}\).Let \(x \in V\) be arbitrary. By definition, we have
\[
\|x\|_{\alpha_1} = \inf\{t \gt 0: \mu(x,t) \gt \alpha_1 \text{ and } \nu(x,t) \leq 1\}
\]
and
\[
\|x\|_{\alpha_2} = \inf\{t \gt;0: \mu(x,t) \gt \alpha_2 \text{ and } \nu(x,t) \leq 1\}.
\]
Since \(\alpha_1 \lt \alpha_2\), we have
\[
\{t>0: \mu(x,t) \gt \alpha_1 \text{ and } \nu(x,t) \leq 1