Given sin A= 4/5 = O/H , using Pythagoras ,
b = √(5^2 - 4^2) = 3
cos B = -5/13 = A/H
b = √(13^2 - 5^2) = 12
1. sin(A+B) , using compound angles
= sinAcosB + cosAsinB
= 4/5 x -5/13 + 3/5 x 12/13= 0.246... = 0.25
2. cos(A+B) = cosAcosB - sinAsinB
= 3/5 x -5/13 - 4/5 x 12/13 = -0.969... = -0.97
3. sin(A+A), using double angle,
= sin2A = 2sinAcosA
= 2 x 4/5 x 3/5
= 0.96
4. cos(A+A) = cos2A = 1 - 2sin^A
= 1 - 2 x (4/5)^2
= -0.28