Quality Learning Support For Better Outcomes
First time here? Checkout the FAQs!
MathsGee is Zero-Rated (You do not need data to access) on: Telkom |Dimension Data | Rain | MWEB

1 like 0 dislike
Find the first 4 terms of the Taylor series for the following functions:

(a) $\ln x$ centered at $a=1$,
(b) $\frac{1}{x}$ centered at $a=1$,
(c) $\sin x$ centered at $a=\frac{\pi}{4}$.
in Mathematics by Bronze Status (9,486 points) | 22 views

1 Answer

0 like 0 dislike
Best answer

$f(x)=\ln x .$ So $f^{(1)}(x)=\frac{1}{x}, f^{(2)}(x)=-\frac{1}{x^{2}}, f^{(3)}(x)=\frac{2}{x^{3}}, f^{(4)}(x)=-\frac{6}{x^{4}}$ and so
$\ln x=\ln 1+(x-1) \times 1+\frac{(x-1)^{2}}{2 !} \times(-1)+\frac{(x-1)^{3}}{3 !} \times(2)+\frac{(x-1)^{4}}{4 !} \times(-6)+\ldots$


$f(x)=\frac{1}{x} .$ So $f^{(1)}(x)=-\frac{1}{x^{2}}, f^{(2)}(x)=\frac{2}{x^{3}}, f^{(3)}(x)=-\frac{6}{x^{4}}$ and so
$\frac{1}{x}=1+(x-1) \times(-1)+\frac{(x-1)^{2}}{2 !} \times(2)+\frac{(x-1)^{3}}{3 !} \times(-6)+\cdots$


$f(x)=\sin x .$ So $f^{(1)}(x)=\cos x, f^{(2)}(x)=-\sin x, f^{(3)}(x)=-\cos x$ and so
$\begin{aligned} \sin x &=\frac{\sqrt{2}}{2}+\left(x-\frac{\pi}{4}\right) \times\left(\frac{\sqrt{2}}{2}\right)+\frac{\left(x-\frac{\pi}{4}\right)^{2}}{2 !} \times\left(-\frac{\sqrt{2}}{2}\right)+\frac{\left(x-\frac{\pi}{4}\right)^{3}}{3 !} \times\left(-\frac{\sqrt{2}}{2}\right)+\cdots \\ &=\frac{\sqrt{2}}{2}\left(1+\left(x-\frac{\pi}{4}\right)-\frac{\left(x-\frac{\pi}{4}\right)^{2}}{2}-\frac{\left(x-\frac{\pi}{4}\right)^{3}}{6}+\cdots\right] \end{aligned}$
by Bronze Status (9,486 points)

Join the MathsGee community and get study support for success - MathsGee provides answers to subject-specific educational questions for improved outcomes.

On MathsGee Answers, you can:

1. Ask questions
2. Answer questions
3. Comment on Answers
4. Vote on Questions and Answers
5. Donate to your favourite users

Enter your email address:

MathsGee Tools

Math Worksheet Generator

Math Algebra Solver

Trigonometry Simulations

Vectors Simulations

Matrix Arithmetic Simulations

Matrix Transformations Simulations

Quadratic Equations Simulations

Probability & Statistics Simulations

PHET Simulations

Visual Statistics

MathsGee ZOOM | eBook