Quality Learning Support For Better Outcomes
First time here? Checkout the FAQs!
x
MathsGee is Zero-Rated (You do not need data to access) on: Telkom |Dimension Data | Rain | MWEB

0 like 0 dislike
4 views
Add the polynomials $-\dfrac{1}{a+b}$ and $-\dfrac{1}{a-b}$
ago in Mathematics by Diamond (78,880 points) | 4 views

1 Answer

0 like 0 dislike
Best answer
$-\dfrac{1}{a+b} + -\dfrac{1}{a-b}$

$\left(a^{2}-b^{2}\right) x^{2}+2 a x+1=0$

$x_{1,2}=\dfrac{-2 a \pm \sqrt{(2 a)^{2}-4\left(a^{2}-b^{2}\right)}}{2\left(a^{2}-b^{2}\right)}$

$x_{1,2}=\dfrac{-2 a \pm \sqrt{4 a^{2}-4 a^{2}+4 b^{2}}}{2\left(a^{2}-b^{2}\right)}$

$x_{1,2}=\dfrac{-2 a \pm \sqrt{4 b^{2}}}{2\left(a^{2}-b^{2}\right)}$

$x_{1,2}=\dfrac{-2 a \pm 2 b}{2\left(a^{2}-b^{2}\right)}$

$x_{1,2}=\dfrac{-a \pm b}{a^{2}-b^{2}}=\dfrac{-a \pm b}{(a-b)(a+b)}$

$x_{1}=\dfrac{-a+b}{(a-b)(a+b)}=\dfrac{-(a-b)}{(a-b)(a+b)}=-\dfrac{1}{(a+b)}$

$x_{2}=\dfrac{-a-b}{(a-b)(a+b)}=\dfrac{-(a+b)}{(a-b)(a+b)}=-\dfrac{1}{(a-b)}$
ago by Diamond (78,880 points)

Related questions

0 like 0 dislike
1 answer
0 like 0 dislike
0 answers
0 like 0 dislike
0 answers

Join the MathsGee community and get study support for success - MathsGee provides answers to subject-specific educational questions for improved outcomes.



On MathsGee Answers, you can:


1. Ask questions
2. Answer questions
3. Comment on Answers
4. Vote on Questions and Answers
5. Donate to your favourite users

Enter your email address:

MathsGee Tools

Math Worksheet Generator

Math Algebra Solver

Trigonometry Simulations

Vectors Simulations

Matrix Arithmetic Simulations

Matrix Transformations Simulations

Quadratic Equations Simulations

Probability & Statistics Simulations

PHET Simulations

Visual Statistics

MathsGee ZOOM | eBook