# Recent questions tagged prove

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $\underline{a}=(2,1,-1)$ and $\underline{b}=(-1,2,1)$, then $2 \underline{a}-3 \underline{b}$ is equal to
If $\underline{a}=(2,1,-1)$ and $\underline{b}=(-1,2,1)$, then $2 \underline{a}-3 \underline{b}$ is equal toIf $\underline{a}=(2,1,-1)$ and $\underline{b}=(-1,2,1)$, then $2 \underline{a}-3 \underline{b}$ is equal to &nbsp; A) $(1,-4,-5)$ B) $(7,-4,5)$ C ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
The distance from the point $(1,1,1)$ to the plane $2 x-10 y+11 z-4=0$ is equal to
The distance from the point $(1,1,1)$ to the plane $2 x-10 y+11 z-4=0$ is equal toThe distance from the point $(1,1,1)$ to the plane $2 x-10 y+11 z-4=0$ is equal to &nbsp; A) $\dfrac{1}{3}$ B) 3 C) $\dfrac{1}{15}$ D) 5 E) no ...
close
Let $z_{1}=\left|z_{1}\right|\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)$ and $z_{2}=\left|z_{2}\right|\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right)$ be two complex numbers.Let $z_{1}=\left|z_{1}\right|\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)$ and $z_{2}=\left|z_{2}\right|\left(\cos \left(\ ... close 0 answers 9 views close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 What is the product of$A$,$B$and$C$? 0 answers 3 views What is the product of$A$,$B$and$C$? \text { Given } A=\left\begin{array}{ll} 4 &amp; 5 \end{array}\right, B=\left\begin{array}{llll} 1 &amp; 1 &amp; 2 &amp; 1 \end{ar ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 What is the distance$D$between the point$P_{0}\left(x_{0}, y_{0}\right)$and the line$a x+b y+c=0$in$R^2$? 1 answer 4 views What is the distance$D$between the point$P_{0}\left(x_{0}, y_{0}\right)$and the line$a x+b y+c=0$in$R^2$?What is the distance$D$between the point$P_{0}\left(x_{0}, y_{0}\right)$and the line$a x+b y+c=0$in$R^2$? ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Let$A$be an$n \times n$matrix with$I_{n}$the identity matrix. The statement det$A \neq 0$is equivalent to: 0 answers 5 views Let$A$be an$n \times n$matrix with$I_{n}$the identity matrix. The statement det$A \neq 0$is equivalent to:Let$A$be an$n \times n$matrix with$I_{n}$the identity matrix. The statement det$A \neq 0$is equivalent to: &nbsp; A. All the given options a ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 The complex number$\frac{1-2 i}{1+2 i}$is equal to 0 answers 5 views The complex number$\frac{1-2 i}{1+2 i}$is equal toThe complex number$\dfrac{1-2 i}{1+2 i}$is equal to &nbsp; A)$\dfrac{3}{5}+\dfrac{4}{5} i$B)$-\dfrac{3}{5}+\dfrac{4}{5} i$C)$\dfrac{3}{5}-\ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If $\vec{a}=(2,1,-1)$ and $\vec{b}=(-1,2,1)$, then $2 \vec{a}-3 \vec{b}$ is equal to
If $\vec{a}=(2,1,-1)$ and $\vec{b}=(-1,2,1)$, then $2 \vec{a}-3 \vec{b}$ is equal toIf $\vec{a}=(2,1,-1)$ and $\vec{b}=(-1,2,1)$, then $2 \vec{a}-3 \vec{b}$ is equal to &nbsp; A) $(1,-4,-5)$ B) $(7,-4,5)$ C) $(7,-4,-5)$ D) $(7,4, ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 The distance from the point$(-1,1,1)$to the plane 0 answers 5 views The distance from the point$(-1,1,1)$to the planeThe distance from the point$(-1,1,1)$to the plane $$2 x-10 y+11 z-4=0$$ is equal to &nbsp; A) 3 B)$\frac{1}{3}$C) 5 D)$\frac{1}{5}$E) no ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Prove Rolle's Theorem under the assumption that for the function$f$on$[a, b]$you have$f(x)>f(a)$for some$x$in the domain of$f$. 0 answers 5 views Prove Rolle's Theorem under the assumption that for the function$f$on$[a, b]$you have$f(x)>f(a)$for some$x$in the domain of$f$.Prove Rolle's Theorem under the assumption that for the function$f$on$a, b$you have$f(x)&gt;f(a)$for some$x$in the domain of$f$. ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 What is the trick for factorizing a polynomial of the form $ax^2+bx+c$ where $a\neq1$? 1 answer 8 views What is the trick for factorizing a polynomial of the form $ax^2+bx+c$ where $a\neq1$?What is the trick for factorizing a polynomial of the form $ax^2+bx+c$ where $a\neq1$? ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Find the domain, the asymptotes (if any) of$f$and classify each asymptote as vertical, horizontal or slant. 0 answers 5 views Find the domain, the asymptotes (if any) of$f$and classify each asymptote as vertical, horizontal or slant.Let $$f(x)=\frac{x^{2}-3}{x+2}$$ You may use that$$f^{\prime}(x)=\frac{x^{2}+4 x+3}{(x+2)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\fra ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Find the intercepts on the$x$- and$y$-axes (if any) for the function$f(x)=\frac{x^{2}-3}{x+2}$and discuss symmetry. 0 answers 4 views Find the intercepts on the$x$- and$y$-axes (if any) for the function$f(x)=\frac{x^{2}-3}{x+2}$and discuss symmetry.Find the intercepts on the$x$- and$y$-axes (if any) for the function$f(x)=\frac{x^{2}-3}{x+2}\$ and discuss symmetry. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Define a vector
Define a vectorDefine a vector ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
What is the trick for factorizing a polynomial of the form $ax^2+bx+c$ where $a\neq1$?
What is the trick for factorizing a polynomial of the form $ax^2+bx+c$ where $a\neq1$?What is the trick for factorizing a polynomial of the form $ax^2+bx+c$ where $a\neq1$? ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Prove the remainder theorem of polynomials
Prove the remainder theorem of polynomialsProve the remainder theorem of polynomials ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Use the Remainder Theorem to find linear factors for the polynomials below. Once you are down to a quadratic, you can use the quadratic formula instead.
Use the Remainder Theorem to find linear factors for the polynomials below. Once you are down to a quadratic, you can use the quadratic formula instead.Use the Remainder Theorem to find linear factors for the polynomials below. Once you are down to a quadratic, you can use the quadratic formula instea ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
For which values of $x$ will $\sum_{k=1}^{\infty}(4 x-1)^{k}$ exist.
For which values of $x$ will $\sum_{k=1}^{\infty}(4 x-1)^{k}$ exist.For which values of $x$ will \ \sum_{k=1}^{\infty}(4 x-1)^{k} \ exist. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Calculate $S_{\infty}$ if $\sum_{p=1}^{\infty} 8(4)^{1-p}$
Calculate $S_{\infty}$ if $\sum_{p=1}^{\infty} 8(4)^{1-p}$Calculate $S_{\infty}$ if \ \sum_{p=1}^{\infty} 8(4)^{1-p} \ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
The unit circle is split into regions by the 4 lines that satisfy. How many of these regions have area $\frac{\pi}{8}$ ?
The unit circle is split into regions by the 4 lines that satisfy. How many of these regions have area $\frac{\pi}{8}$ ?The unit circle is split into regions by the 4 lines that satisfy \ \begin{gathered} 6 x^{4}-7 x^{3} y-36 x^{2} y^{2}+ \\ 7 x y^{3}+6 y^{4}=0 \end{ga ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Prove that $A \cup \emptyset=A$
Prove that $A \cup \emptyset=A$Prove that $A \cup \emptyset=A$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Prove that $A \subset A \cup B$ and $B \subset A \cup B$
Prove that $A \subset A \cup B$ and $B \subset A \cup B$Prove that $A \subset A \cup B$ and $B \subset A \cup B$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Prove that $A \cup(B \cup C)=(A \cup B) \cup C$, (associative law)
Prove that $A \cup(B \cup C)=(A \cup B) \cup C$, (associative law)Prove that $A \cup(B \cup C)=(A \cup B) \cup C$, (associative law) ...
Prove that $A \cup B=B \cup A$, (commutative law)
Prove that $A \cup B=B \cup A$, (commutative law)Prove that $A \cup B=B \cup A$, (commutative law) ...