# Recent questions tagged vector

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Which of the following vectors in $R^{6}$, if any, are parallel to $\mathbf{u}=(-2,1,0,3,5,1) ?$
Which of the following vectors in $R^{6}$, if any, are parallel to $\mathbf{u}=(-2,1,0,3,5,1) ?$Which of the following vectors in $R^{6}$, if any, are parallel to $\mathbf{u}=(-2,1,0,3,5,1) ?$ (a) $(4,2,0,6,10,2)$ (b) $(4,-2,0,-6,-10,-2)$ (c) $(0 ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 For what value(s) of$t$, if any, is the given vector parallel to$\mathbf{u}=(4,-1)$? 0 answers 3 views For what value(s) of$t$, if any, is the given vector parallel to$\mathbf{u}=(4,-1)$?For what value(s) of$t$, if any, is the given vector parallel to$\mathbf{u}=(4,-1)$? (a)$(8 t,-2)$(b)$(8 t, 2 t)$(c)$\left(1, t^{2}\right)$... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Let$\mathbf{u}=(1,-1,3,5)$and$\mathbf{v}=(2,1,0,-3)$. Find scalars$a$and$b$so that$a \mathbf{u}+b \mathbf{v}=(1,-4,9,18)$. 0 answers 5 views Let$\mathbf{u}=(1,-1,3,5)$and$\mathbf{v}=(2,1,0,-3)$. Find scalars$a$and$b$so that$a \mathbf{u}+b \mathbf{v}=(1,-4,9,18)$.Let$\mathbf{u}=(1,-1,3,5)$and$\mathbf{v}=(2,1,0,-3)$. Find scalars$a$and$b$so that$a \mathbf{u}+b \mathbf{v}=(1,-4,9,18)$. ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Let$\mathbf{u}=(2,1,0,1,-1)$and$\mathbf{v}=(-2,3,1,0,2)$. Find scalars$a$and$b$so that$a \mathbf{u}+b \mathbf{v}=(-8,8,3,-1,7)$0 answers 2 views Let$\mathbf{u}=(2,1,0,1,-1)$and$\mathbf{v}=(-2,3,1,0,2)$. Find scalars$a$and$b$so that$a \mathbf{u}+b \mathbf{v}=(-8,8,3,-1,7)$Let$\mathbf{u}=(2,1,0,1,-1)$and$\mathbf{v}=(-2,3,1,0,2)$. Find scalars$a$and$b$so that$a \mathbf{u}+b \mathbf{v}=(-8,8,3,-1,7)$... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 Find scalars$c_{1}, c_{2}$, and$c_{3}$for which the equation is satisfied. 0 answers 3 views Find scalars$c_{1}, c_{2}$, and$c_{3}$for which the equation is satisfied. Find scalars$c_{1}, c_{2}$, and$c_{3}$for which the equation is satisfied.$c_{1}(1,-1,0)+c_{2}(3,2,1)+c_{3}(0,1,4)=(-1,1,19)c_{1}(- ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Show that there do not exist scalars $c_{1}, c_{2}$, and $c_{3}$ such that $$c_{1}(-2,9,6)+c_{2}(-3,2,1)+c_{3}(1,7,5)=(0,5,4)$$
Show that there do not exist scalars $c_{1}, c_{2}$, and $c_{3}$ such that $$c_{1}(-2,9,6)+c_{2}(-3,2,1)+c_{3}(1,7,5)=(0,5,4)$$Show that there do not exist scalars $c_{1}, c_{2}$, and $c_{3}$ such that $$c_{1}(-2,9,6)+c_{2}(-3,2,1)+c_{3}(1,7,5)=(0,5,4)$$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Show that there do not exist scalars $c_{1}, c_{2}$, and $c_{3}$ such that $c_{1}(1,0,1,0)+c_{2}(1,0,-2,1)+c_{3}(2,0,1,2)=(1,-2,2,3)$
Show that there do not exist scalars $c_{1}, c_{2}$, and $c_{3}$ such that $c_{1}(1,0,1,0)+c_{2}(1,0,-2,1)+c_{3}(2,0,1,2)=(1,-2,2,3)$Show that there do not exist scalars $c_{1}, c_{2}$, and $c_{3}$ such that $c_{1}(1,0,1,0)+c_{2}(1,0,-2,1)+c_{3}(2,0,1,2)=(1,-2,2,3)$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $P$ be the point $(2,3,-2)$ and $Q$ the point $(7,-4,1)$.
Let $P$ be the point $(2,3,-2)$ and $Q$ the point $(7,-4,1)$.Let $P$ be the point $(2,3,-2)$ and $Q$ the point $(7,-4,1)$. (a) Find the midpoint of the line segment connecting the points $P$ and $Q$. (b) Find th ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
In relation to the points $P_{1}$ and $P_{2}$, what can you say about the terminal point of the following vector if its initial point is at the origin?
In relation to the points $P_{1}$ and $P_{2}$, what can you say about the terminal point of the following vector if its initial point is at the origin?In relation to the points $P_{1}$ and $P_{2}$, what can you say about the terminal point of the following vector if its initial point is at the origin ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Let $P$ be the point $(1,3,7)$. If the point $(4,0,-6)$ is the midpoint of the line segment connecting $P$ and $Q$, what is $Q$ ?
Let $P$ be the point $(1,3,7)$. If the point $(4,0,-6)$ is the midpoint of the line segment connecting $P$ and $Q$, what is $Q$ ?Let $P$ be the point $(1,3,7)$. If the point $(4,0,-6)$ is the midpoint of the line segment connecting $P$ and $Q$, what is $Q$ ? ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
If the sum of three vectors in $R^{3}$ is zero, must they lie in the same plane? Explain.
If the sum of three vectors in $R^{3}$ is zero, must they lie in the same plane? Explain.If the sum of three vectors in $R^{3}$ is zero, must they lie in the same plane? Explain. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
True/False: Two equivalent vectors must have the same initial point
True/False: Two equivalent vectors must have the same initial pointTrue/False: Two equivalent vectors must have the same initial point ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
True/False: The vectors $(a, b)$ and $(a, b, 0)$ are equivalent.
True/False: The vectors $(a, b)$ and $(a, b, 0)$ are equivalent.True/False: The vectors $(a, b)$ and $(a, b, 0)$ are equivalent. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
True/False: If $k$ is a scalar and $\mathbf{v}$ is a vector, then $\mathbf{v}$ and $k \mathbf{v}$ are parallel if and only if $k \geq 0$.
True/False: If $k$ is a scalar and $\mathbf{v}$ is a vector, then $\mathbf{v}$ and $k \mathbf{v}$ are parallel if and only if $k \geq 0$.True/False: If $k$ is a scalar and $\mathbf{v}$ is a vector, then $\mathbf{v}$ and $k \mathbf{v}$ are parallel if and only if $k \geq 0$. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
True/False: The vectors $\mathbf{v}+(\mathbf{u}+\mathbf{w})$ and $(\mathbf{w}+\mathbf{v})+\mathbf{u}$ are the same.
True/False: The vectors $\mathbf{v}+(\mathbf{u}+\mathbf{w})$ and $(\mathbf{w}+\mathbf{v})+\mathbf{u}$ are the same.True/False: The vectors $\mathbf{v}+(\mathbf{u}+\mathbf{w})$ and $(\mathbf{w}+\mathbf{v})+\mathbf{u}$ are the same. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
True/False: If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$
True/False: If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$True/False: If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
True/False: If $(a, b, c)+(x, y, z)=(x, y, z)$, then $(a, b, c)$ must be the zero vector.
True/False: If $(a, b, c)+(x, y, z)=(x, y, z)$, then $(a, b, c)$ must be the zero vector.True/False: If $(a, b, c)+(x, y, z)=(x, y, z)$, then $(a, b, c)$ must be the zero vector. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
True/False: If $k$ and $m$ are scalars and $\mathbf{u}$ and $\mathbf{v}$ are vectors, then $$(k+m)(\mathbf{u}+\mathbf{v})=k \mathbf{u}+m \mathbf{v}$$
True/False: If $k$ and $m$ are scalars and $\mathbf{u}$ and $\mathbf{v}$ are vectors, then $$(k+m)(\mathbf{u}+\mathbf{v})=k \mathbf{u}+m \mathbf{v}$$True/False: If $k$ and $m$ are scalars and $\mathbf{u}$ and $\mathbf{v}$ are vectors, then $$(k+m)(\mathbf{u}+\mathbf{v})=k \mathbf{u}+m \mathbf{v}  ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 True/False: If the vectors \mathbf{v} and \mathbf{w} are given, then the vector equation 0 answers 4 views True/False: If the vectors \mathbf{v} and \mathbf{w} are given, then the vector equationIf the vectors \mathbf{v} and \mathbf{w} are given, then the vector equation$$ 3(2 \mathbf{v}-\mathbf{x})=5 \mathbf{x}-4 \mathbf{w}+\mathbf{v}  ...
close
True/False: The linear combinations $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}$ and $b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}$ can only be equal if $a_{1}=b_{1}$ and $a_{2}=b_{2}$.True/False: The linear combinations $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}$ and $b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}$ can only be equal if $... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 What is a norm of a vector? 1 answer 2 views What is a norm of a vector?What is a norm of a vector? ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 How is the norm of a vector related to the Theorem of Pythagoras? 1 answer 2 views How is the norm of a vector related to the Theorem of Pythagoras?How is the norm of a vector related to the Theorem of Pythagoras? ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 What is the norm of the vector$\mathbf{v}=(-3,2,1)$in$R^{3}$? 0 answers 2 views What is the norm of the vector$\mathbf{v}=(-3,2,1)$in$R^{3}$?What is the norm of the vector$\mathbf{v}=(-3,2,1)$in$R^{3}$? ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 What is the norm of the vector$\mathbf{v}=(2,-1,3,-5)$in$R^{4}$? 1 answer 2 views What is the norm of the vector$\mathbf{v}=(2,-1,3,-5)$in$R^{4}$?What is the norm of the vector$\mathbf{v}=(2,-1,3,-5)$in$R^{4}$? ... close Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993 If$\mathbf{v}$is a vector in$R^{n}$, and if$k$is any scalar, then prove that$\|\mathbf{v}\|=0$if and only if$\mathbf{v}=\mathbf{0}$0 answers 3 views If$\mathbf{v}$is a vector in$R^{n}$, and if$k$is any scalar, then prove that$\|\mathbf{v}\|=0$if and only if$\mathbf{v}=\mathbf{0}$If$\mathbf{v}$is a vector in$R^{n}$, and if$k$is any scalar, then prove that$\|\mathbf{v}\|=0$if and only if$\mathbf{v}=\mathbf{0}\$ ...